Report on Quarterly Air Monitoring, Area IV, Third Quarter 2022

Santa Susana Field Laboratory Ventura County, California

Prepared for: United States Department of Energy

Prepared by: North Wind Portage, Inc.

REPORT ON QUARTERLY AIR MONITORING, AREA IV, THIRD QUARTER 2022, SANTA SUSANA FIELD LABORATORY, VENTURA COUNTY, CA

December 2022

Contract No. DE-EM0000837-DT0007583

Prepared for:

U.S. Department of Energy 4100 Guardian Street, Suite 160 Simi Valley, California 93063

Prepared by:

North Wind Portage, Inc. 1425 Higham Street Idaho Falls, Idaho 83402 (This page intentionally left blank)

EXECUTIVE SUMMARY

This report summarizes the United States Department of Energy (DOE) air monitoring activities conducted during the third quarter of 2022, which is the eighteenth quarter (Q18) of the monitoring period (July 1, 2022, to September 30, 2022) at Area IV within the Santa Susana Field Laboratory (SSFL), located in Ventura County, California. The area specifically discussed within this report is the DOE portion, Area IV of SSFL, known as the Energy Technology Engineering Center (ETEC). Year one of the Baseline Air Monitoring Program consisted of Quarter 1 through Quarter 4. Year two consisted of Quarter 5 through Quarter 7. Year 3 consisted of Quarter 8 through Quarter 11. Year 4 consisted of Quarter 12 through Quarter 15. The program is continuing for a fifth year, which consists of Quarter 16 through Quarter 19.

This quarterly report has been developed by North Wind Portage, Inc., on behalf of DOE in cooperation with The Boeing Company (Boeing) and the National Aeronautics and Space Administration (NASA), as part of the Baseline Air Monitoring Program.

In accordance with the Final Baseline Air Monitoring Work Plan, Santa Susana Field Laboratory, Ventura County, California (NASA 2017), the responsible parties are monitoring for particulate matter between 2.5 and 10 microns in aerodynamic diameter (PM₁₀), volatile organic compounds (VOCs), and radionuclides at air monitoring stations DOE-1, DOE-2, DOE-3, and DOE-4 encompassing the ETEC, Area IV portion of SSFL. Having developed the baseline levels for PM₁₀, VOCs, and radionuclides helps distinguish between levels that naturally occur or were previously present at the ETEC site and if onsite remediation activities produce elevated results. Air monitoring will be continued throughout remediation activities to be able to compare results from onsite remediation activities to baseline data in the Annual Air Monitoring Reports.

The following air monitoring activities conducted during 2022, Q3, by DOE within Area IV are summarized in this report:

- Collected meteorological data from one location (DOE-4);
- Collected PM₁₀ data from four locations (DOE-1 through DOE-4);
- Collected air samples from four locations (DOE-1 through DOE-4) for VOC laboratory analysis; and
- Collected radionuclide samples for laboratory analysis from four locations (DOE-1 through DOE-4).

Meteorological data, PM₁₀, and radionuclide data all met the data completeness goal of 80%, and VOC data met the completeness goal of 85% for Q18. The nineteenth quarter of the Air Monitoring Program will begin October 1, 2022.

The following site activities were conducted during Q18 by DOE within Area IV:

- Quarterly site-wide groundwater level monitoring
- CDM Smith conducted groundwater sampling activities at the Former Sodium Disposal Facility as a part of groundwater interim measures
- Surveillance and maintenance.

CONTENTS

EXE	CUTIVE	SUMMARY	V
ACR	ONYMS	AND ABBREVIATIONSvi	ii
1.	INTRO	DUCTION1-	1
	1.1	Regional Climate and Wind Direction1-	2
2.	SUMM	ARY	1
3.	ANAL	YTICAL SAMPLING EVENTS	1
4.	DATA.	4-	1
	4.1	Meteorological Data4-	1
	4.2	PM ₁₀ Data4-	4
	4.3	Volatile Organic Compound Data 4-	5
	4.4	Radionuclide Data 4-	6
5.	QA/QC	ACTIVITIES5-	1
	5.1	Field QA/QC5-	1
	5.2	Laboratory QA/QC5-	5
	5.3	Audit Results	5
6.	REFER	ENCES6-	1
		FIGURES	
Figure	e 1 – SSF	L Air Monitoring Locations	
Figure	e 2 – DOI	E Air Monitoring Locations	
Figure	e 3 – DOI	E Quarterly Wind Rose	
		TABLES	
Table	1. Data	screening quality control codes for meteorological data4-	1
Table	2. Data	screening summary for monitored meteorological parameters4-	3
Table	3. PM ₁₀	data completeness for July 1, 2022, to September 30, 20224-	4
Table	4. Top fi	ve PM ₁₀ 24-hour average concentration days for Q184-	5
Table	5. Ambi	ent air VOC data completeness4-	5

Table 6. Gross alpha and beta-gamma average results for Q18	4-6
Table 7. Meteorological sensor recommended maintenance frequency (Met One)	5-5
Table 8. PM ₁₀ audit completeness.	5-6

APPENDICES

Appendix A – PM₁₀ Daily Averages and Monthly Statistics

Appendix B – Analytical Results for Ambient Air VOCs

Appendix C – Radionuclide Results

Appendix D – PM₁₀ Monthly Audit Reports and Flow Verification Results

vii

ACRONYMS AND ABBREVIATIONS

°C degrees Celsius °F degrees Fahrenheit

μCi microcurie(s)

μg/m³ microgram(s) per cubic meter

Boeing The Boeing Company

CAAQS California Ambient Air Quality Standards

CFR Code of Federal Regulations

DASC Data Assessment Statistical Calculator

DOE U.S. Department of Energy

DTSC State of California Department of Toxic Substances Control

EPA U.S. Environmental Protection Agency
ETEC Energy Technology Engineering Center

GC gas chromatography

Hg mercury

HHRA Human Health Risk Assessment

m meter(s)

m/sec meter(s) per second

mb millibar(s)

MDC minimum detectable concentration

mL milliliter(s)
mph miles per hour
MS mass spectrometry
MDL method detection limit

NAAQS National Ambient Air Quality Standards

NASA National Aeronautics and Space Administration
NIST National Institute of Standards and Technology

pCi picocurie(s)

PM₁₀ particulate matter less than 10 microns in aerodynamic diameter

Q18 eighteenth quarter
QA quality assurance
QC quality control

RAWS Remote Automatic Weather Stations

RPD relative percent difference SDG sample delivery group

SSFL Santa Susana Field Laboratory
VOC volatile organic compound

1. INTRODUCTION

National Aeronautics and Space Administration (NASA), The Boeing Company (Boeing), and the U.S. Department of Energy (DOE), also known as the responsible parties, are performing air monitoring at the Santa Susana Field Laboratory (SSFL) site located in Ventura County, California. The SSFL is a business segment of Boeing. SSFL operates the 2,849-acre site located atop a range of hills between the Simi and San Fernando valleys, north of Los Angeles. The westernmost 290 acres of the SSFL, known as Area IV, contains both DOE and Boeing facilities. The DOE portion is mainly contained within the 90 acres known as the Energy Technology Engineering Center (ETEC).

When opened in the late 1950s, ETEC was ideally remote from population centers to enable development of security-sensitive projects. These projects supported research for DOE and its predecessor agencies for nuclear research and energy development. Area IV includes buildings that house test apparatus for large-scale heat transfer and fluid mechanics experiments, mechanical and chemical test facilities, office buildings, and auxiliary facilities.

Air monitoring is being conducted in accordance with the *Final Baseline Air Monitoring Work Plan, Santa Susana Field Laboratory, Ventura County, California* (NASA 2017), which was submitted to the State of California Department of Toxic Substances Control (DTSC) on September 21, 2017. DTSC approved the Work Plan. Final locations of the air monitoring locations were approved by DTSC on January 30, 2018 (DTSC 2018).

The objective of the Air Monitoring Program is to evaluate project conditions and provide a basis for determining the magnitude of deviation from those baseline conditions that may result from onsite remediation activities (project) at SSFL. Responsible parties are monitoring for particulate matter between 2.5 and 10 microns in aerodynamic diameter (PM_{10}), and volatile organic compounds (VOCs), at 14 locations at SSFL. Data was collected for four perimeter samplers (DOE-1 through DOE-4) and analyzed for gross alpha and gross beta. Individual radionuclide concentrations were determined by analysis at an offsite laboratory for these same four locations. Meteorological data is also collected as a part of the Air Monitoring Program.

Figure 1 shows the air monitoring locations for the Air Monitoring Program. These locations were selected based on the areas to be remediated, with consideration of winds in the area, topographic features, and accessibility. The air monitoring sites were also selected based on guidance obtained from the U.S. Environmental Protection Agency's (EPA's) *Quality Assurance Handbook for Air Pollution Measurement Systems*, Volume II, Ambient Air Monitoring Program (EPA 2017) and *Meteorological Monitoring Guidance for Regulatory Modeling Applications* (EPA 2000). Sites were evaluated per 40 Code of Federal Regulations (CFR) 58, Appendix C – Ambient Air Quality Monitoring Methodology. DOE is responsible for DOE-1, DOE-2, DOE-3, and DOE-4 of the 14 monitoring locations, represented in Figure 1. VOCs, PM₁₀, and radionuclides are monitored at the four DOE monitoring locations, and meteorological conditions are monitored at the DOE-4 location. The DOE monitoring locations DOE-1 through DOE-4 are shown in Figure 2.

This report summarizes the results and quality assurance (QA) activities performed during the third quarter of 2022, which was from July 1, 2022, through September 30, 2022. This represents the eighteenth quarter (Q18) of the monitoring period.

1.1 Regional Climate and Wind Direction

The climate in the SSFL area is characterized as "Mediterranean." The mean temperature during the winter months is approximately 50 degrees Fahrenheit (°F) and the mean temperature in the summer months is approximately 70°F. Based on climate data for 2019 and 2020 from Weather Currents, average rainfall is on the order of 15.9 inches per year. The majority of the rainfall occurs between December and April with January and February being the wettest months.

Through the third quarter in 2022, the Simi Valley received approximately 0.1 inches of rainfall.

The average hourly wind speed in Simi Valley varies significantly by season. The more turbulent part of the year lasts for 6 months, from November to April, with average western wind speeds of more than 7 miles per hour (mph). The calmer time of year lasts for 6 months, with northerly winds from May to October.

During the fall, winter, and spring, Santa Ana winds can blow from the north or northeast in excess of 35 mph.

2. SUMMARY

This report summarizes the air monitoring data collected during the Q18 reporting period (July 1, 2022, through September 30, 2022).

Quality objectives and data completeness were met for all meteorological, PM₁₀, VOC, and radionuclide data for Q18 of the Air Monitoring Program.

Urban background data compared with air monitoring data indicate that the PM_{10} concentrations measured at stations DOE-1, DOE-2, DOE-3, and DOE-4 during Q18 are comparable to the PM_{10} concentrations measured at stations characterizing urban background. Other sources that emit VOC characteristics are motor vehicle emissions, fossil fuel combustion, and wildfires. The results are reflected when considering SSFL site's urban background and relatively remote location from vehicle traffic. PM_{10} concentrations did not exceed the California Ambient Air Quality Standard (CAAQS; 50 micrograms per cubic meter $[\mu g/m^3]$) during Q18. During Q18 DOE-2 experienced a pump failure starting August 9, 2022, and was out of commission until August 11, 2022, and DOE-1 experienced a sensor failure starting September 17, 2022, and was out of commission until September 20, 2022 (as noted in Appendix A).

During Q18, no VOC analytes were detected above the EPA regional screening level (RSL).

Data collected during Q18 agrees with data collected, analyzed, and reported by the State of California DTSC, Los Angeles County Emergency Response Organization, the DOE Emergency Response organization, or other Multi-Agency Task Forces. Air monitoring at Area IV of the SSFL is to be continued starting October 1, 2022, for the nineteenth quarter of the Air Monitoring Program.

Site activities during Q18 included quarterly site-wide groundwater level monitoring, surveillance and maintenance, and groundwater sampling activities conducted by CDM Smith at the Former Sodium Disposal Facility as part of the groundwater interim measures.

3. ANALYTICAL SAMPLING EVENTS

VOCs are collected according to the EPA Toxic Compendium Method TO-15, Determination of Volatile Organic Compounds (VOCs) in Air Collected in Specially-Prepared Canisters and Analyzed by Gas Chromatography/Mass Spectrometry (GC/MS) (EPA 1999). Twenty-four-hour time-integrated samples are collected into Summa canisters via a flow controller and sent to an offsite laboratory for analysis. VOCs are collected every other week. There were six VOC sampling events with five field duplicate samples collected during this reporting period.

During Q18, radionuclide samples were collected at four perimeter sampler locations, DOE-1 through DOE-4. These samples were collected on glass fiber (Type A/E) filters that are changed twice a week. After a minimum 120-hour holding time to allow the decay of short-lived radon and thoron daughter products, the samples are simultaneously counted for gross alpha and beta activity with a low-background, thin-window, gas-flow proportional-counting system continually purged with P-10 argon/methane counting gas over a preset time interval. There were 108 airborne radioactivity filter samples collected in Q18 — 27 each for DOE-1, DOE-2, DOE-3, and DOE-4. Following analysis for gross alpha and gross beta radiation, sample filters were combined to form one composite sample representative of each location. The four composite samples were then analyzed for individual radionuclides at an offsite laboratory.

4. DATA

Sections 4.1 through 4.4 discuss Q18 air monitoring data.

4.1 Meteorological Data

General Summary

Meteorological data, also called weather data, is being collected as part of the ETEC cleanup and restoration effort. This information, particularly the wind direction and wind speed, can be used to help understand how dust and other air pollutants from the site are carried by the wind to possibly affect nearby public and residential areas. This is especially important when the E-BAM particulate monitors at the site detect higher-than-normal amounts of dust in the air. Scientific computer models can be used with this weather data in association with the particulate monitoring data to describe the air quality for the communities near the ETEC site. However, before the weather data can be used with the computer models it must first be tested for completeness and accuracy. A detailed description of the weather data collection and quality testing is provided in the following paragraphs.

Monitored meteorology parameters at the DOE-4 station included wind speed, wind direction, air temperature at 2 meters (m) and 10 m, relative humidity, precipitation, barometric pressure, and solar radiation. In addition, statistical parameters provided by the data logger included delta temperature (i.e., the 10-m temperature minus the 2-m temperature), maximum wind speed (i.e., wind gust), and standard deviation of wind direction. Observations were recorded at 15-minute intervals corresponding to minutes :00, :15, :30, and :45 each hour. There were 92 days in this reporting period (Q18) from 01 July 2022 through 30 September 2022 with a total of 8,832 possible 15-minute observations. This is the third quarter of Year 5 of the baseline monitoring.

Data Validation and Statistics

Data validation screening was performed on the recorded meteorological observations pursuant to EPA's *Meteorological Monitoring Guidance for Regulatory Modeling Applications* (EPA 2000) Table 8-4 (Suggested Data Screening Criteria) and Table 8-3 (Suggested Quality Control Codes). Validation screening provided the basis for evaluating data completeness and for determining sensor performance and/or maintenance status. Validation was performed following each weekly data download. Data validation quality control codes applied to the meteorological observations are defined in Table 1.

Table :	1. Data	a screening	quality con	trol coc	les to	r met	eoro	logical	data.
---------	---------	-------------	-------------	----------	--------	-------	------	---------	-------

Code	Meaning	Description (as used for ETEC meteorological data validation)
0	Valid	PASS – Observation is accurate within the performance limits of the instrument (i.e., value passes all data validation screening criteria).
3	Acceptable	PASS – Observation originally failed initial quality control (QC) check (see Code 6), but additional review using other independent data and meteorological judgment support final validity.
6	Failed initial QC check	FAIL – Observation did not pass data validation screening criteria.
7	Suspect	FAIL – Observation failed initial data validation QC check (see Code 6) and could not be verified through additional review using other independent data.
8	Invalid	FAIL – Observation judged to be inaccurate or in error, and the cause is known.
9	Missing	FAIL – Observation was not collected.

The validation screening involved comparing, on an individual parameter basis, the recorded values (i.e., observations) against the EPA screening criteria shown in Table 2. The data validation procedure involved an initial automated review to apply a first level QC Code of 0 (valid), 6 (failed), or 9 (missing) as defined in Table 1. Observations initially flagged with a QC Code = 6 were then manually (i.e., second-level) reviewed by a project meteorologist. The procedure is outlined below:

- Values meeting all screening criteria for the respective meteorological parameter were automatically considered "valid" (QC Code = 0).
- Values not meeting a screening criterion were automatically flagged as "failed initial QC" (QC Code = 6). These values were subjected to second-level manual meteorological review using other available observations (e.g., 2-m vs. 10-m temperature at DOE-4 or from nearby Remote Automatic Weather Stations [RAWS] meteorological station CEEC1 in the Cheeseboro Canyon, California, area located 2.6 miles south of the DOE-4 site), and meteorological judgment:
 - o Values confirmed by second-level review were deemed "acceptable" (final QC Code = 3).
 - Otherwise, the values were deemed "suspect" (final QC Code = 7).
- Observations known to be inaccurate (QC Code = 8).
- Missing observations were automatically flagged as "missing" (QC Code = 9).

Values that pass validation with a final QC Code of 0 or 3 are included in the data completeness statistics and the final validated meteorological data set. Values with a final QC Code of 7, 8, or 9 are excluded from the final dataset and counted against the data completeness percentage. Quarterly data statistics for the meteorological parameters are listed in Table 2 along with year-to-date and project-to-date results. Year-to-date and project-to-date percentages are calculated as total valid observations through the completed quarters for the year divided by the total possible observations through this same period.

The completeness goal for meteorological data is 80% on an annual basis. Data completeness statistics for all completed reporting quarters in Year 5 of the Air Monitoring Program are presented in Table 2.

Wind Rose

The final validated 15-minute meteorological dataset was used to develop the wind rose for Q18 as presented in Figure 3. A wind rose is a graphical representation of wind speed and direction distribution (or wind climatology) for the period of interest. The frequency of winds blowing from specific directions are shown as petals on the wind rose, with the frequency of wind speeds depicted by color bands. Calm winds are identified as being less than 0.5 meters per second (m/sec).

During Q18, data capture for wind speed and direction at DOE-4 was 97.62%. The average and maximum wind speeds were 3.53 m/sec and 10.8 m/s, respectively. The maximum recorded wind gust was 15.9 m/sec. The predominant wind direction was from the east-southeast (ESE).

Table 2. Data screening summary for monitored meteorological parameters.

Meteorological Parameter	Screening Criteria (1) (for valid sensor responses)	Data Completeness Percent (%) (2) Q18	Data Completeness Percent (%) ⁽²⁾ Year 5 to Date	Data Completeness Percent (%) ⁽²⁾ Project to Date	
	between 0 and 25 m/sec		99.19	94.41	
Wind Speed	> 0.1 m/sec variation over 3 hours	97.62			
	> 0.5 m/sec variation over 12 hours				
	between 0 and 360 degrees				
Wind Direction	> 1 degree variation over 3 hours	100	99.996	95.29	
	> 10 degree variation over 12 hours	100 99.996			
Standard Deviation of Wind Direction	Inherits the completeness stats of Wind Direction	100	99.996	95.29	
	≤ local record high (monthly basis)				
Temperature	≥ local record low (monthly basis)	100	99.996	95.29	
@ 2 m	> 0.5 degrees Celsius (°C) variation over	100			
	12 hours				
Temperature	≤ local record high (monthly basis)				
@ 10 m	≥ local record low (monthly basis)	100	99.996 99.996	95.29	
@ 10 III	> 0.5°C variation over 12 hours				
Delta	≤ 0.1°C during daytime				
Temperature	≥ -0.1°C during nighttime	100	99.996	95.29	
remperature	between -3.0 and 5.0°C				
	relative humidity between 0-100%				
	dew point T ≤ ambient T				
(and Dewpoint	dew point T ≤ 5.0°C variation over 1 hour	100	99.996	89.77	
Temperature)	dew point T > 0.5°C variation over 12				
	hours				
	≤ 1 inch in 1 hour				
Precipitation	≤ 4 inches in 24 hours	100	99.996	95.29	
	≥ 2 inches in 3 months				
Barometric	between 871 and 982 millibar (mb) (local)				
Pressure	(i.e., between 940 and 1060 mb sea level)	100	99.996	95.29	
	≤ 6 mb variation over 3 hours				
Solar Radiation	> 0 at night ≤ maximum possible for date and latitude	99.99	99.96	95.27	

- (1) Screening criteria from EPA Meteorological Monitoring Guidance (EPA 2000), Table 8-4.
- (2) Data Completeness % = [Observations Passing] / [Possible Observations)].
 - Missing or suspect observations count against data completeness statistics.
 - Year Two is an abbreviated data collection year spanning the period Apr 15-Dec 31, 2019 (i.e., Quarters 5, 6, and 7). This was done to synchronize future data collection years with calendar years.
 - Last column in this table represents the cumulative Completeness % for all completed quarterly reporting periods.
- (3) The number of possible 15-minute observations in the completed reporting periods:
 - Q01 = 8,736 • Q02 = 8,832 • Q05 = 8,736 • Q08 = 8,736 • Q06 = 8,832
 - Q03 = 8,832 • Q07 = 7,488 • Q10 = 8,832
- Q04 = 8,640 (only 3 quarters) • Q11 = 8,832
- Year One = 35,040 Year Two = 25,056 (abbreviated) • Year Three = 35,136

- Q09 = 8,736 Q13 = 8,736 • Q12 = 8,640 • Q16 = 8,640 • Q17 = 8,736
- Q14 = 8,832 • Q18 = 8,832
- Q15 = 8,832 • Year Four = 35,040
 - Year Five = 26,208 (to-date) Project = 156,480 (to-date)

4.2 PM₁₀ Data

 PM_{10} data, defined as coarse particles between 2.5 and 10 microns in aerodynamic diameter, are measured at the ETEC site. Sources of particulate matter can be naturally occurring or caused by human activity. The air monitoring conducted at ETEC is used to determine if any suspended particles are from activities conducted onsite or if they are consistent with surrounding air quality data. Some of the naturally occurring particles can originate from high winds, forest or grass fires, burning of fossil fuels in vehicles, or stirred-up road dust.

 PM_{10} data are collected with Met One E-BAM monitors at four monitoring locations. The Met One E-BAM uses the principle of beta attenuation to provide a determination of mass concentration. Twenty-four-hour concentrations are calculated from the hourly concentrations. There were 92 days in this reporting period.

- DOE-1 had valid readings 89 out of 92 days.
- DOE-2 had valid readings 89 out of 92 days.
- DOE-3 had valid readings all 92 days.
- DOE-4 had valid readings all 92 days.

DOE-3 and DOE-4 had 100% data completeness for PM_{10} in Q18. DOE-1 and DOE-2 had a completeness of 97%, for a total data completeness of 98.5%, exceeding the project goal of 80% completeness for total samples collected (see Table 3). The complete table of daily averages is presented in Appendix A. The unit at DOE-2 (Y12096) stopped working on August 9, 2022, due to a failed air pump and had to be repaired. The unit at DOE-2 (Y12096) was replaced with backup unit (W23313), and DOE-2 was back up and running on August 11, 2022. DOE-2 had three days during which no data was collected. The unit at DOE-1 (X16067) stopped working on September 17, 2022, due to a sensor failure. The sample nozzle and vane on the unit at DOE-1 (X16067) were cleaned, and DOE-1 was back up and running on September 20, 2022. DOE-1 had three days during which no data was collected.

Table 3. PM₁₀ data completeness for July 1, 2022, to September 30, 2022.

Location	Valid Readings (Days)	Possible Readings (Days)	Data Completeness (Percent)
DOE-1	89	92	97%
DOE-2	89	92	97%
DOE-3	92	92	100%
DOE-4	92	92	100%

Average Total Data Completeness 98.5%

The five highest PM_{10} results identified for the reporting period are listed in Table 4 along with the CAAQS for PM_{10} . PM_{10} concentrations were consistent with levels typically found in urban air. Of these top five results, three were recorded at DOE-1, one at DOE-3, and one at DOE-4. None of the top five values in Q18 were above the CAAQS of 50 $\mu g/m^3$ or NAAQS of 150 $\mu g/m^3$.

Table 4. Top five PM₁₀ 24-hour average concentration days for Q18.

10 10 10 10 10 10 10 10 10 10 10 10 10 1							
Date	Location	PM ₁₀ Value (μg/m³)	CAAQS (μg/m³)				
9/30/2022	DOE-1	47.291	50				
9/21/2022	DOE-1	44.333	50				
9/9/2022	DOE-3	40.333	50				
9/17/2022	DOE-4	38.625	50				
9/29/2022	DOE-1	35.166	50				

Note: No values were above CAAQS screening level.

4.3 Volatile Organic Compound Data

VOCs are organic chemicals that have a high vapor pressure, which causes them to evaporate quickly and enter the surrounding air. VOCs can be naturally occurring or man-made. The VOC data collected can help distinguish between man-made detections from onsite activities or naturally existing organic chemicals. The VOC data collected are compared against screening levels. These screening levels are risk-based concentrations derived from standardized equations combining exposure information with toxicity data.

All four DOE locations were sampled each day during the six VOC sampling events this period. Data completeness goals for VOCs exceeded the project goal of 85% (see Table 5).

Table 5. Ambient air VOC data completeness.

Location	Valid Readings (Days)	Possible Readings (Days)	Data Completeness (Percent)
DOE-1	6	6	100%
DOE-2	6	6	100%
DOE-3	6	6	100%
DOE-4	6	6	100%

Average Total Data Completeness 100%

VOC detection results are presented in Table B-1 (Appendix B), including comparison to the April 2019 DTSC Human Health Risk Assessment (HHRA) Note 3 Screening Levels (DTSC 2019) or the 40 CFR 136 Appendix D for MDLs. During Q18, no VOC analytes were detected above the EPA regional screening level (RSL).

Two man-made VOC analytes, dichlorodifluoromethane (freon-12) and ethyl acetate, have been detected routinely at all four monitoring stations, during all quarterly sampling events, and in duplicate samples. These analytes were also detected as estimated values at NASA stations, but were not detected at Boeing stations. Based on laboratory QC data (method blanks, clean canister certifications), the sampling process and laboratory process are not the sources of the two analytes. The onsite source of the analytes is currently unknown.

Neither the establishment of sources for specific contaminants nor the performance of source apportionment was required for identifying remedial air quality impacts, nor was either within the scope or data quality objectives of the Air Monitoring Program.

4.4 Radionuclide Data

ETEC continuously monitors air at multiple locations for radioactive particles. This is performed for two reasons: (1) to determine the background airborne radioactivity concentration so that any possible releases from work activities can be detected, and (2) to detect any possible release from existing activities.

There were 108 airborne radioactivity filter samples collected in Q18 — 27 each for DOE-1, DOE-2, DOE-3, and DOE-4. Each sample was collected on a glass-fiber filter (as discussed in Section 3) and was analyzed using a "low background" Protean radiation counter system onsite. These samples included background radioactive materials and the potential of Area IV—specific radioactive materials.

The alpha and beta data are presented in Table C-1 (Appendix C). The onsite analysis determined only "alpha" or "beta/gamma" and did not analyze for specific isotopes. Isotopic analysis was performed later by an offsite laboratory. Each sample produced a gross alpha and beta-gamma count. The analysis compared these values with the background radiation count rates, and using the volume of air collected determined the net counts and the minimum detectable concentration (MDC) for each sampling event. Some results in Table C-1 (Appendix C) are shown as negative values (because detector background is subtracted from the result).

All but six alpha samples were below the MDC, and these samples were only slightly greater than the MDC. Each MDC was below the airborne effluent limits specified in California regulations. There was no possibility of significant Area IV alpha radioactive material on these filters.

Approximately 32% of the beta samples were below MDC, and the gross (background radioactive material included) samples exceeded the MDC in 68% of samples, indicating the presence of airborne radioactive material (including background materials). The beta-gamma samples greater than the MDC were only slightly above the MDC, and were well below the effluent limits specified in California regulations. The elevated (but still low) results may be due to more airborne dust.

Following collection and onsite analysis, the air filters were composited and analyzed for specific radionuclides by an offsite laboratory. This data is shown in Table C-2 (Appendix C). This laboratory data determined that most radioactive material present was natural in origin, consisting of beryllium-7, polonium-210, potassium-40, combined radium-226 and radium-228, thorium-230, thorium-232, uranium-233/234, uranium-235/236, and uranium-238.

While artificial radionuclides (e.g., cesium-137, strontium-90, plutonium-239) were present in very small amounts, none of the results were above the MDC in Q18. The presence of these radionuclides is considered a part of the normal variation of global fallout and resuspension activities.

A summary of the gross air sampling data is shown in Table 6 below.

Table 6. Gross alpha and beta-gamma average results for Q18.

Location	Average alpha result (μCi/mL)	Average alpha MDC (μCi/mL)	Average beta result (μCi/mL)	Average beta MDC (μCi/mL)
DOE-1	8.38E-16	5.75E-15	3.62E-14	2.56E-14
DOE-2	1.46E-15	5.75E-15	4.53E-14	2.56E-14
DOE-3	1.22E-15	5.75E-15	3.80E-14	2.56E-14
DOE-4	2.10E-15	5.75E-15	3.63E-14	2.56E-14
Average	1.40E-15	5.75E-15	3.90E-14	2.56E-14

5. QA/QC ACTIVITIES

The following QA/QC activities were conducted for the PM_{10} , VOC, radionuclide, and meteorological data collection and analysis.

5.1 Field QA/QC

5.1.1 PM₁₀

The 24-hour daily averages for Q18 are presented in Appendix A along with the monthly minimum, maximum, and 95th percentile for each station location.

Flow Verifications

Functionality of the Met One E-BAM units is verified and recorded monthly during instrument audits; however, the instruments are also checked several times a week for operability. During the monthly audits, the Met One E-BAM temperature, pressure, and flow rate are verified against a National Institute of Standards and Technology (NIST) traceable flowmeter. E-BAM units are occasionally swapped out for maintenance, and preliminary audits of the new units are performed. The Q18 audit results for the four DOE sites showed bias percentages that ranged from -1.08 to -0.21%. None of the results exceeded the flow rate measurement quality objective of +/- 4%.

Complete audit reports and flow verification results for Q18 are presented in Appendix D of this document. The flow rate verifications were based on 40 CFR 58, Appendix A, 3.3.1 and 4.2.2 through 4.2.3, along with the *Guideline on the Meaning and the Use of Precision and Bias Data Required by 40 CFR Part 58 Appendix A* (EPA 2007). The *Data Assessment Statistical Calculator* (DASC) tool, which is an EPA Excelbased software application, was used to perform the necessary statistical calculations based on the flowrate data collected during the monthly audits. Sections 2 and 2.5 of this EPA guidance document (EPA 2007) provide additional information and instruction for using the DASC tool.

5.1.2 VOCs

All data underwent at least two levels of QC review at the laboratory prior to transmission to North Wind. A minimum of 20% of the transmitted VOC results undergo a Level IV third-party data validation, annually. During this quarter, two of the six SDGs, P2202944 and P2204118, underwent the Level IV data validation. The data validation ensures that the required analytical measurement quality objectives are met to ensure the data are of sufficient quality for their intended purpose.

Each location had valid readings on the six sample days for a sample completeness of 100%. Data completeness goals for VOCs exceeded the project goal of 85%.

5.1.3 Field Duplicates

Five field duplicates were collected during this reporting period. Six sampling events were conducted for the Q18 effort; however, the inclusion of five field duplicates meets the frequency required per the QAPP. Ethyl acetate in SDGs P2202944, P2203145, P2203366, P2203912, and P2204118 and toluene for SDG P2202944 were detected in five field duplicates pair that exceeded the quality objective of +/- 15% relative percent difference (RPD). Ten sample and duplicate analyte detections were within the quality objective of +/- 15% RPD. There were no other detections associated with the samples and associated duplicates collected during this reporting period.

5.1.4 Canister Pressure

Vacuum in the canisters is measured before and after sampling with an analog pressure gauge to ensure proper function. Final canister vacuums ranged from -5 inches mercury (Hg) to -1 inches Hg during this reporting period.

5.1.5 Radiological

The detector for onsite gross alpha and beta sample analysis is calibrated annually by a third-party vendor using sources traceable to the NIST. The detector is checked by counting alpha- and beta-emitting sources at the site when received from the vendor following calibration. This establishes an acceptable performance range for daily source checks. On each day the detector is used, performance is determined with the site source. The detector may be used if the daily check is within the acceptable performance range.

Samples analyzed at the offsite laboratory are QC-checked at the laboratory. These QC checks include blanks, laboratory replicates, matrix spikes, and matrix spike duplicates. Barium, which behaves chemically similar to radium, is used as a carrier to determine the yield of the chemical extraction.

Since Q13, 100% of the radiological analytical results have undergone Level IV, third-party data validation. The data validation ensures that the required analytical measurement quality objectives are met to ensure the data are of sufficient quality for their intended purpose.

5.1.6 Meteorological

During the reporting period, a weekly data validation screening and review was performed on the monitored meteorological parameters based on the EPA guidance document *Meteorological Monitoring Guidance for Regulatory Modeling Applications* (EPA 2000), Table 8-4 – Suggested Data Screening Criteria, as outlined in Section 4.1. The data validation procedure provided the basis for evaluating data completeness and for determining sensor performance and/or maintenance status.

5.1.7 Maintenance

Routine visual checks were performed on the meteorological station during weekly data downloading site visits. This included inspection of the meteorological tower sensors, E-BAM monitoring unit wind sensors, and solar-powered batteries to ensure proper functioning.

5.1.8 Corrective Action

Issues and corrective actions regarding the PM_{10} monitors and the meteorological station are noted in Sections 5.1.8.1 and 5.1.8.2, respectively. Issues and corrective actions regarding the E-BAM monitors are noted in Section 4.2. No issues or corrective actions were noted regarding the remaining monitoring equipment or sampling events during this reporting period.

5.1.8.1 **PM**₁₀ **Monitors**

Refer to Section 4.2 for a detailed description of PM₁₀ air monitoring equipment issues.

5.1.8.2 Meteorological Station

Although the data percent completion goal during Q18 was met: (1) the solar radiometer continued to record values that exceed the daily screening criteria and was affected by shadows cast by the tower, (2) the wind speed sensor was closely monitored for signs of bearing failure, and (3) the improperly programmed data logger continues to affect calculation of delta temperature (i.e., temperature difference between 2 m and 10 m). These three items are discussed below, including issues and corrective actions/resolutions. The recommend sensor maintenance schedule is provided as item (4) below.

(1) Solar Radiometer:

Data Quality Issues:

 The solar radiometer continued to display an upward bias drift in the raw data observations.

Corrective Actions:

- Bias Removal In the quarterly report for Quarter 14, details of the bias and correction were first presented. Quarterly adjustment factors have been developed and applied to the project datasets starting with the first quarter of 2020 based on a statistical trend analysis. A "bias removal" adjustment factor was also developed and applied to the Q18 solar radiometer data. All validated project meteorological datasets to-date now include "unbiased" solar radiometer observations.
- Resolutions The unbiased observations are in line with the baseline year observations and theoretical values. The sensor drift bias will continue to be evaluated and correction factors applied during upcoming quarters. The following table presents the quarterly adjustment factors that have been applied to the solar radiometer raw data. In addition, replacement of the solar radiometer is being considered.

Solar Radiometer Adjustment Factor - Quarterly (adustment factor to eliminate drift bias)

MONTH	2020	2021	2022
1			
2	0.946	0.894	0.859
3			
4			
5	0.924	0.889	0.861
6			
7			
8	0.888	0.860	0.836
9			
10			
11	0.893	0.849	-
12			

(2) Wind Speed Sensor

Data Quality Issue:

Near the end of Quarter 15 the wind speed sensor failed and then began working again after an 11-day period. To avoid having the same failure, since Q16 the data has been closely monitored to verify that this is no longer a problem. Near the end of Q18, the wind speed sensor failed and then began working again after a 2-day period, similar to the sensor failure that occurred at the end of Q15.

Corrective Action:

 Resolution – The wind speed sensor is scheduled for replacement. This is expected to occur within the first month of Q19.

(3) Delta Temperature Calculation

Data Quality Issue:

 For meteorological monitoring, delta temperature should be defined as T at the higher level minus T at the lower level. However, the datalogger was improperly programmed to calculate the inverse of delta temperature when the station was replaced after the Woolsey Wildfire during Q3. Consequently, delta temperature observations are being calculated with an opposite sign compared to the values from the original data logger.

Corrective Action:

 <u>Datalogger Equation</u> – Instead of reprogramming the datalogger to correctly calculate delta temperature, an adjustment multiplication factor of "-1" has been applied to the delta temperature values from the new data logger prior to performing the data validation.

<u>Resolution</u> – With application of the "-1" multiplication factor, delta temperature values in the validated project dataset accurately present delta temperature as:

Delta Temperature = [Temperature @ 10 m] minus [Temperature @ 2 m]

(4) Recommended Maintenance Schedule:

Although not a corrective action, the manufacturer's recommended maintenance frequency for meteorological sensors is presented below for information purposes. Proper and timely maintenance of the meteorological sensors is critical for ensuring that the data are not only valid (based on screening criteria) but also accurate. Schedules for maintenance and calibration are provided in the sensor user manuals and based on the in-service time of the sensor. Table 7 lists the recommended maintenance schedules for the Met One sensors installed at the DOE-4 meteorological station.

Table 7. Meteorological sensor recommended maintenance frequency (Met One).

Sensor	Frequency	Maintenance
ws	6–12 Month	Inspect for proper operation (manual check of pulses per revolution, bearing condition, anemometer cup condition, and bearing replacement if warranted)
	12-24 Month	Return to Met One for complete overhaul
	6–12 Month	Inspect for proper operation (manual check of sensor readings through 360°)
WD	6–12 Month	Field calibration
	12-24 month	Replace bearings & potentiometer
Т	6–12 Month	Inspect sensor for proper operation (field comparison sensor reading against a precision mercury thermometer)
D.I.	6–12 Month	Inspect sensor for proper operation (compare sensor reading against local weather service or field psychrometer)
RH	12 Month	Return sensor to Met One for calibration and replacement of O-rings and filter membrane
Rain Gauge	6 Month	Clean sensor and bucket and field verify proper operation
Pressure	12 Month	Return sensor to Met One for calibration and replacement of O-rings and filter membrane
Radiometer	Monthly	Clean sensor glass dome with clean rag/tissue

Note: Maintenance schedules are as specified in the respective Met One sensor user manuals.

5.2 Laboratory QA/QC

This report covers 29 air monitoring samples for VOCs collected and analyzed according to the EPA Toxic Compendium Method TO-15, Determination of Volatile Organic Compounds (VOCs) in Air Collected in Specially-Prepared Canisters and Analyzed by Gas Chromatography/Mass Spectrometry (GC/MS) (EPA 1999). These samples were reported under six SDGs by the laboratory. All six SDG analyses were performed by ALS in Simi Valley, CA. For each SDG, the laboratory ran continuing calibration verification, a method blank, and laboratory control samples, and verified surrogate recoveries for each sample.

The laboratory provided certified clean canisters for the sampling events. The certification of the canister batch is considered the equipment blank for each sampling event. The ALS case narrative discusses the cleaning of the canisters.

5.3 Audit Results

The PM_{10} instruments were calibrated at the manufacturer and were functioning properly upon installation. The PM_{10} instruments were audited monthly with a secondary NIST traceable flow meter. Although audits occur only monthly, the instruments were checked several times a week to ensure that they were functioning. Table 8 lists the dates for audits conducted in July through September. No flow rate comparisons exceeded the project's acceptance criterion of +/- 4. The sample nozzles and support vanes were cleaned as needed. Complete audit reports are presented in Appendix D.

Table 8. PM₁₀ audit completeness.

Location	Met One E-BAM Serial Number	Parameter	Date
DOE-1	X16067	PM_{10}	07/21/2022
DOE-2	Y12096	PM ₁₀	07/21/2022
DOE-3	W23314	PM ₁₀	07/21/2022
DOE-4	W23310	PM ₁₀	07/21/2022
DOE-2	W23313	PM ₁₀	08/11/2022
DOE-1	X16067	PM ₁₀	08/30/2022
DOE-2	W23313	PM ₁₀	08/30/2022
DOE-3	W23314	PM ₁₀	08/30/2022
DOE-4	W23310	PM ₁₀	08/30/2022
DOE-1	X16067	PM ₁₀	09/22/2022
DOE-2	W23313	PM ₁₀	09/22/2022
DOE-3	W23314	PM ₁₀	09/22/2022
DOE-4	W23310	PM ₁₀	09/22/2022

6. REFERENCES

- 10 Code of Federal Regulations (CFR) 20, Appendix B, "Annual Limits on Intake (ALIs) and Derived Air Concentrations (DACs) of Radionuclides for Occupational Exposure; Effluent Concentrations; Concentrations for Release to Sewerage," Table 2.
- 40 CFR 58, Appendix C Ambient Air Quality Monitoring Methodology.
- 40 CFR 136, Appendix B Definition and Procedure for the Determination of the Method Detection Limit.
- California Environmental Protection Agency, Department of Toxic Substances Control (DTSC). 2018.

 Approval of the Final Air Monitoring Station Locations for the Santa Susana Field Laboratory,

 Ventura County, California. January.
- California Environmental Protection Agency, DTSC. 2022. Human and Ecological Risk Office Human Health Risk Assessment Note Number 3, DTSC-modified Screening Levels. April. Available online at:

 <u>Human Health Risk Assessment Note 3 -June 2020 revised May 2022 (ca.gov)</u> and <u>HHRA-Note-3-Tables-June2020-Revised-May2022A.xlsx (live.com)</u>.
- National Aeronautics and Space Administration (NASA). 2017. Baseline Air Monitoring Work Plan, Santa Susana Field Laboratory, Ventura County, California. Prepared for California Department of Toxic Substances Control. Prepared on behalf of National Aeronautics and Space Administration, George C. Marshall Space Flight Center, The Boeing Company, and Department of Energy, Energy Technology and Engineering Center. September. Available online at:

 SSFL Baseline Air Monitoring Work Plan
 - U.S. Environmental Protection Agency (EPA). 1999. Air Method, Toxic Organics-15 (TO-15), Determination of Volatile Organic Compounds (VOCs) in Air Collected in Specially-Prepared Canisters and Analyzed by Gas Chromatography/Mass Spectrometry (GC/MS). EPA 625/R-96/010b. January. Available online at: Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air, 2nd Edition Compendium Method TO-15 (epa.gov)https://www.epa.gov/homeland-security-research/epa-air-method-toxic-organics-15-15-determination-volatile-organic
- U.S. Environmental Protection Agency (EPA). 2000. *Meteorological Monitoring Guidance for Regulatory Modeling Applications, United State Environmental Protection Agency, Office of Air Quality Planning and Standards*. EPA-454/R-99-005. February.
- U.S. Environmental Protection Agency (EPA). 2007. *Guideline on the Meaning and the Use of Precision and Bias Data Required by 40 CFR Part 58 Appendix A, Version 1.1*. EPA-454/B-07-001. October.
- U.S. Environmental Protection Agency (EPA). 2017. *Quality Assurance Handbook for Air Pollution Measurement Systems, Volume II, Ambient Air Monitoring Program.* EPA-454/B-17-001. January.

Figure 1 –SSFL Air Monitoring Locations

Figure 2 -DOE Air Monitoring Locations

Figure 3 – DOE Quarterly Wind Rose

APPENDIX A

PM₁₀ Daily Averages and Monthly Statistics

PM₁₀ Daily Averages

	T WIII Daily Averages							
Site ID	DOE-1	DOE-2	DOE-3	DOE-4				
6	PM ₁₀ (μg/m³)	PM ₁₀ (μg/m³)	PM ₁₀ (μg/m³)	PM ₁₀ (μg/m ³)				
Sample Date	(CAAQS	(CAAQS	(CAAQS	(CAAQS				
07/04/22	50 μg/m³)	50 μg/m³)	50 μg/m³)	50 μg/m³)				
07/01/22	23.708	23.041	18.041	17.625				
07/02/22	15.666	15.708	19.625	14.916				
07/03/22	19.208	16.041	18.041	17.958				
07/04/22	17.541	16.958	15.916	20.208				
07/05/22	27.166	21.125	27.416	29.5				
07/06/22	14.125	13	11.833	11.041				
07/07/22	13.625	10.625	11.416	11				
07/08/22	14.291	12.375	15.375	13.083				
07/09/22	8.708	7.583	8.625	9.416				
07/10/22	12.458	11.833	12.166	12.75				
07/11/22	15.708	17.166	14.791	14.375				
07/12/22	14.291	26.5	15.166	18.208				
07/13/22	16.333	17	10.333	12.125				
07/14/22	13.833	13.708	12.458	12.958				
07/15/22	18.416	26.5	16.083	17.75				
07/16/22	20.541	25.333	18.916	17.833				
07/17/22	23.333	15.416	16.541	17.041				
07/18/22	13.916	12.25	14.5	14.791				
07/19/22	7.5	8.041	8.833	8.541				
07/20/22	10.916	9.5	12.375	12.25				
07/21/22	16.625	14.416	14.75	13.75				
07/22/22	19.916	18.708	20	18.75				
07/23/22	20.791	24.958	23.166	21.833				
07/24/22	21.625	26.291	21.083	25.583				
07/25/22	24.208	17.208	17.458	18.166				
07/26/22	12.25	18.416	15.083	17.375				
07/27/22	17.583	23.375	14.708	12.958				
07/28/22	16.208	19.875	19.75	16.25				
07/29/22	15.166	18.333	15.583	16.833				
07/30/22	12.125	21.958	15.5	11.791				
07/31/22	14.958	9.541	9.833	12.166				
08/01/22	14.583	10.625	12.75	11.333				
08/02/22	13.041	13.25	14.875	11.541				
08/03/22	20.083	19.25	15.583	13.708				
08/04/22	15.625	16.166	21.583	17.5				
08/05/22	13.958	12.541	18.125	13.875				
00,03,22	13.830	12.041	10.120	13.073				

Site ID	DOE-1	DOE-2	DOE-3	DOE-4
	$PM_{10} (\mu g/m^3)$	$PM_{10} (\mu g/m^3)$	$PM_{10} (\mu g/m^3)$	$PM_{10} (\mu g/m^3)$
Sample Date	(CAAQS	(CAAQS	(CAAQS	(CAAQS
	50 μg/m³)	50 μg/m³)	50 μg/m³)	50 μg/m³)
08/06/22	9.208	8.25	10.416	9.958
08/07/22	10.583	9.958	11.291	11.333
08/08/22	16.291	13.541	15.125	15
08/09/22	15.875		15.875	15.041
08/10/22	11.416		12.875	10.166
08/11/22	10.208		8.708	9.458
08/12/22	13.416	15.083	13.541	12.666
08/13/22	15.291	19.75	16.208	15.333
08/14/22	12.958	13.541	12.041	11.583
08/15/22	15.916	28.75	16.541	15.541
08/16/22	16.875	15.541	16.583	15.083
08/17/22	14	12.958	17.125	13.625
08/18/22	13.083	11.791	12.041	11.375
08/19/22	18.125	15	16.083	15.833
08/20/22	20.25	15.416	22.458	19.416
08/21/22	15.458	15.625	24.875	29.875
08/22/22	14.125	13.5	15	20.75
08/23/22	23.958	16.458	21.583	26.166
08/24/22	19.916	17.916	22.625	20.708
08/25/22	16.916	13.375	15.375	18.916
08/26/22	17.25	12.541	15.791	17.166
08/27/22	13.041	11.5	14.875	17.958
08/28/22	11.416	14.291	22.833	27.166
08/29/22	13.75	13	17.875	17.083
08/30/22	12.291	10.083	13	12.458
08/31/22	9.833	9.5	10.166	13.708
09/01/22	30.333	22.208	23.875	21.333
09/02/22	24.041	21.333	28.5	22
09/03/22	16.875	17	16.916	17.25
09/04/22	12.916	13.041	13.666	13.583
09/05/22	17.125	15.75	16.708	16.25
09/06/22	21.916	17.791	19.875	18
09/07/22	15.416	14.5	18	15.416
09/08/22	17.541	14.375	21.916	15.333
09/09/22	27.083	23.083	40.333	25.875
09/10/22	6.625	8.833	31.5	30.916

Site ID	DOE-1	DOE-2	DOE-3	DOE-4
	PM ₁₀ (μg/m ³)			
Sample Date	(CAAQS	(CAAQS	(CAAQS	(CAAQS
	50 μg/m³)	50 μg/m³)	50 μg/m³)	50 μg/m³)
09/11/22	11.208	8.333	22.958	18.083
09/12/22	9.166	6.666	20.208	24.083
09/13/22	15.958	14.916	24.083	22.791
09/14/22	18.541	17.416	24.375	28.375
09/15/22	14.416	13.208	20.416	25.333
09/16/22	17.083	18.416	20.458	24.666
09/17/22		17.708	34.625	38.625
09/18/22		13.125	16.291	25.583
09/19/22		8.416	12	13.083
09/20/22	30.583 *	4.166	9.833	12.125
09/21/22	44.333	6.333	12.333	16.875
09/22/22	24.708	9.75	12.25	16.583
09/23/22	14.708	10.958	12.833	13.166
09/24/22	8.208	10.375	6.916	8.083
09/25/22	6	5.416	5.291	5
09/26/22	7.25	5.5	6.875	7.75
09/27/22	13.333	10.708	10.833	11.083
09/28/22	20.166	15.291	15.916	15.916
09/29/22	35.166	16	16.625	18.666
09/30/22	47.291	19.583	23.833	21.583

Note: * indicates the average is only for a partial day of readings due to sensor failure

PM₁₀ Monthly Statistics

		July 2022			August 2022	2	September 2022			
		PM ₁₀			PM ₁₀		PM ₁₀			
Location			95th			95th			95th	
ID	High	Low	PCTL	High	Low	PCTL	High	Low	PCTL	
DOE-1	27.16600	7.50000	23.95800	23.95800	9.20800	20.16650	47.29100	6.00000	41.58290	
DOE-2	26.50000	7.58300	26.39550	28.75000	8.25000	19.57500	23.08300	4.16600	21.81425	
DOE-3	27.41600	8.62500	26.39550	24.87500	8.70800	22.72900	40.33300	5.29100	28.65000	
DOE-4	29.50000	8.54100	23.70800	29.87500	9.45800	26.66600	38.62500	5.00000	29.77255	

PCTL = percentile

APPENDIX B

Analytical Results for Ambient Air VOCs

Table B-1. Ambient air VOC detection results compared to SLs.

Location			Method Detection		Screening Level	
ID	Sample Date	Analyte	Limit	Result	Value	SL Source
DOE-1	07/06/2022	Dichlorodifluoromethane	0.13	1.9	100	US EPA RSL
DOE-1	07/06/2022	Ethyl acetate	0.41	26	73	US EPA RSL
DOE-1	07/06/2022	Toluene	0.096	1.1	310	DTSC HHRA NOTE 3
DOE-1	07/06/2022	Trichlorofluoromethane	0.12	1	1300	DTSC HHRA NOTE 3
DOE-2	07/06/2022	Dichlorodifluoromethane	0.12	1.9	100	US EPA RSL
DOE-2	07/06/2022	Ethyl acetate	0.4	26	73	US EPA RSL
DOE-2	07/06/2022	Toluene	0.092	1	310	DTSC HHRA NOTE 3
DOE-2	07/06/2022	Trichlorofluoromethane	0.12	1	1300	DTSC HHRA NOTE 3
DOE-3	07/06/2022	Dichlorodifluoromethane	0.15	1.9	100	US EPA RSL
DOE-3	07/06/2022	Ethyl acetate	0.47	44 (;J)	73	US EPA RSL
DOE-3	07/06/2022	Toluene	0.11	1.5 (;J)	310	DTSC HHRA NOTE 3
DOE-3	07/06/2022	Trichlorofluoromethane	0.14	1	1300	DTSC HHRA NOTE 3
DOE-4	07/06/2022	Dichlorodifluoromethane	0.13	1.9	100	US EPA RSL
DOE-4	07/06/2022	Ethyl acetate	0.42	19	73	US EPA RSL
DOE-4	07/06/2022	Isopropanol	0.33	1.5	210	US EPA RSL
DOE-4	07/06/2022	Toluene	0.098	0.94	310	DTSC HHRA NOTE 3
DOE-4	07/06/2022	Trichlorofluoromethane	0.12	1	1300	DTSC HHRA NOTE 3
DOE-1	07/19/2022	Dichlorodifluoromethane	0.14	1.9	100	US EPA RSL
DOE-1	07/19/2022	Ethyl acetate	0.45	25	73	US EPA RSL
DOE-1	07/19/2022	Trichlorofluoromethane	0.13	0.95	1300	DTSC HHRA NOTE 3
DOE-2	07/19/2022	Dichlorodifluoromethane	0.13	1.9	100	US EPA RSL
DOE-2	07/19/2022	Ethyl acetate	0.43	15	73	US EPA RSL
DOE-2	07/19/2022	Trichlorofluoromethane	0.12	0.95	1300	DTSC HHRA NOTE 3
DOE-3	07/19/2022	Dichlorodifluoromethane	0.13	2.0	100	US EPA RSL
DOE-3	07/19/2022	Trichlorofluoromethane	0.12	0.98	1300	DTSC HHRA NOTE 3
DOE-4	07/19/2022	Dichlorodifluoromethane	0.13	2.0	100	US EPA RSL
DOE-4	07/19/2022	Ethyl acetate	0.43	13	73	US EPA RSL
DOE-4	07/19/2022	Trichlorofluoromethane	0.12	0.99	1300	DTSC HHRA NOTE 3
DOE-1	08/02/2022	Dichlorodifluoromethane	0.13	1.7	100	US EPA RSL
DOE-1	08/02/2022	Ethyl acetate	0.41	35	73	US EPA RSL
DOE-1	08/02/2022	Toluene	0.094	1.7	310	DTSC HHRA NOTE 3
DOE-1	08/02/2022	Trichlorofluoromethane	0.12	0.82	1300	DTSC HHRA NOTE 3
DOE-2	08/02/2022	Dichlorodifluoromethane	0.11	1.7	100	US EPA RSL
DOE-2	08/02/2022	Ethyl acetate	0.36	33	73	US EPA RSL
DOE-2	08/02/2022	Toluene	0.084	1.3	310	DTSC HHRA NOTE 3
DOE-2	08/02/2022	Trichlorofluoromethane	0.10	0.86	1300	DTSC HHRA NOTE 3
DOE-3	08/02/2022	Dichlorodifluoromethane	0.13	1.7	100	US EPA RSL
DOE-3	08/02/2022	Ethyl acetate	0.43	22	73	US EPA RSL
DOE-3	08/02/2022	Toluene	0.099	1.2	310	DTSC HHRA NOTE 3
DOE-3	08/02/2022	Trichlorofluoromethane	0.12	0.83	1300	DTSC HHRA NOTE 3
DOE-4	08/02/2022	Dichlorodifluoromethane	0.14	1.7	100	US EPA RSL
DOE-4	08/02/2022	Ethyl acetate	0.44	12	73	US EPA RSL

			Method		Screening	
Location			Detection		Level	
ID	Sample Date	Analyte	Limit	Result	Value	SL Source
DOE-4	08/02/2022	Trichlorofluoromethane	0.13	0.84	1300	DTSC HHRA NOTE 3
DOE-1	09/01/2022	2-butanone	0.16	2.4	5200	US EPA RSL
DOE-1	09/01/2022	Dichlorodifluoromethane	0.13	2.2	100	US EPA RSL
DOE-1	09/01/2022	Ethyl acetate	0.42	11	73	US EPA RSL
DOE-1	09/01/2022	Trichlorofluoromethane	0.12	1.1	1300	DTSC HHRA NOTE 3
DOE-2	09/01/2022	Dichlorodifluoromethane	0.13	2.1	100	US EPA RSL
DOE-2	09/01/2022	Ethyl acetate	0.43	23	73	US EPA RSL
DOE-2	09/01/2022	Trichlorofluoromethane	0.13	1.1	1300	DTSC HHRA NOTE 3
DOE-3	09/01/2022	Ethyl acetate	0.49	18	73	US EPA RSL
DOE-3	09/01/2022	Trichlorofluoromethane	0.14	1.1	1300	DTSC HHRA NOTE 3
DOE-4	09/01/2022	Dichlorodifluoromethane	0.14	2.2	100	US EPA RSL
DOE-4	09/01/2022	Ethyl acetate	0.45	11	73	US EPA RSL
DOE-4	09/01/2022	Trichlorofluoromethane	0.13	1.1	1300	DTSC HHRA NOTE 3
DOE-1	09/16/2022	Dichlorodifluoromethane	0.12	2.4	100	US EPA RSL
DOE-1	09/16/2022	Ethyl acetate	0.39	4.7	73	US EPA RSL
DOE-1	09/16/2022	Trichlorofluoromethane	0.11	1.2	1300	DTSC HHRA NOTE 3
DOE-2	09/16/2022	Dichlorodifluoromethane	0.21	2.3	100	US EPA RSL
DOE-2	09/16/2022	Ethyl acetate	0.68	19	73	US EPA RSL
DOE-3	09/16/2022	Dichlorodifluoromethane	0.12	2.3	100	US EPA RSL
DOE-3	09/16/2022	Ethyl acetate	0.4	9 (;J)	73	US EPA RSL
DOE-3	09/16/2022	Trichlorofluoromethane	0.12	1.1	1300	DTSC HHRA NOTE 3
DOE-4	09/16/2022	Dichlorodifluoromethane	0.13	2.4	100	US EPA RSL
DOE-4	09/16/2022	Ethyl acetate	0.43	10	73	US EPA RSL
DOE-4	09/16/2022	Trichlorofluoromethane	0.12	1.1	1300	DTSC HHRA NOTE 3
DOE-1	09/30/2022	Dichlorodifluoromethane	0.13	2.3	100	US EPA RSL
DOE-1	09/30/2022	Ethyl acetate	0.40	27	73	US EPA RSL
DOE-1	09/30/2022	Toluene	0.094	1.4	310	DTSC HHRA NOTE 3
DOE-1	09/30/2022	Trichlorofluoromethane	0.12	1.1	1300	DTSC HHRA NOTE 3
DOE-2	09/30/2022	Dichlorodifluoromethane	0.12	2.4	100	US EPA RSL
DOE-2	09/30/2022	Ethyl acetate	0.38	22	73	US EPA RSL
DOE-2	09/30/2022	Toluene	0.088	0.99	310	DTSC HHRA NOTE 3
DOE-2	09/30/2022	Trichlorofluoromethane	0.11	1.2	1300	DTSC HHRA NOTE 3
DOE-3	09/30/2022	Dichlorodifluoromethane	0.12	2.3	100	US EPA RSL
DOE-3	09/30/2022	Ethyl acetate	0.40	31	73	US EPA RSL
DOE-3	09/30/2022	Toluene	0.093	1.3	310	DTSC HHRA NOTE 3
DOE-3	09/30/2022	Trichlorofluoromethane	0.12	1.1	1300	DTSC HHRA NOTE 3
DOE-4	09/30/2022	Dichlorodifluoromethane	0.12	2.3	100	US EPA RSL
DOE-4	09/30/2022	Ethyl acetate	0.39	11	73	US EPA RSL
DOE-4	09/30/2022	Toluene	0.091	0.94	310	DTSC HHRA NOTE 3
DOE-4	09/30/2022	Trichlorofluoromethane	0.11	1.1	1300	DTSC HHRA NOTE 3

J = estimated value

APPENDIX C

Radionuclide Results

Table C-1. Gross alpha and gross beta air sample results for air samplers.

Sample Collection Date	Result Alpha (mCi/mL)	MDC – Alpha (mCi/mL)	Result Beta (mCi/mL)	MDC – Beta (mCi/mL)
	Sam	ple location DO	E-1	
7/1/2022	1.85E-15	4.63E-15	3.38E-14	2.14E-14
7/5/2022	2.17E-15	4.80E-15	1.40E-14	2.22E-14
7/8/2022	5.10E-16	6.32E-15	-9.35E-15	2.92E-14
7/11/2022	2.59E-15	6.48E-15	1.45E-14	3.00E-14
7/15/2022	-6.28E-16	4.77E-15	1.98E-14	2.21E-14
7/18/2022	-1.60E-16	6.26E-15	3.09E-14	2.90E-14
7/22/2022	-3.75E-16	4.78E-15	1.04E-14	2.21E-14
7/25/2022	1.51E-15	6.28E-15	5.50E-14	2.91E-14
7/29/2022	-3.83E-16	4.88E-15	4.14E-14	2.26E-14
8/1/2022	-1.17E-15	6.86E-15	2.91E-14	2.89E-14
8/5/2022	2.13E-15	5.18E-15	4.11E-14	2.19E-14
8/8/2022	-3.77E-15	6.76E-15	2.34E-14	2.85E-14
8/12/2022	1.64E-15	5.23E-15	3.36E-14	2.21E-14
8/15/2022	3.39E-15	7.37E-15	4.12E-14	3.11E-14
8/19/2022	1.38E-15	5.22E-15	6.32E-14	2.20E-14
8/22/2022	-2.22E-15	7.03E-15	2.44E-14	2.96E-14
8/26/2022	-8.79E-16	5.15E-15	5.79E-14	2.17E-14
8/29/2022	-1.51E-15	6.90E-15	2.79E-14	2.91E-14
9/2/2022	5.49E-15	4.82E-15	5.17E-14	2.18E-14
9/6/2022	5.48E-15	4.81E-15	7.33E-14	2.18E-14
9/9/2022	1.71E-15	6.54E-15	8.33E-14	2.96E-14
9/12/2022	2.38E-15	6.51E-15	7.94E-15	2.95E-14
9/16/2022	1.27E-15	4.83E-15	3.40E-14	2.19E-14
9/19/2022	2.60E-17	6.29E-15	3.17E-14	2.85E-14
9/23/2022	-9.30E-16	4.60E-15	7.13E-15	2.08E-14
9/26/2022	1.11E-15	6.97E-15	7.18E-14	3.16E-14
9/30/2022	2.02E-17	4.89E-15	6.36E-14	2.21E-14

Sample Collection Date	Result Alpha (mCi/mL)	MDC – Beta (mCi/mL)		
	Sam	ple location DO	E-2	
7/1/2022	2.34E-15	4.63E-15	3.46E-14	2.14E-14
7/5/2022	2.43E-15	4.80E-15	1.10E-14	2.22E-14
7/8/2022	-1.17E-15	6.32E-15	1.70E-14	2.92E-14
7/11/2022	-5.09E-16	6.48E-15	5.13E-14	3.00E-14
7/15/2022	6.38E-16	4.77E-15	4.69E-14	2.21E-14
7/18/2022	5.06E-16	6.27E-15	4.86E-14	2.90E-14
7/22/2022	8.92E-16	4.78E-15	4.19E-14	2.21E-14
7/25/2022	-1.60E-16	6.28E-15	2.39E-14	2.91E-14
7/29/2022	1.95E-15	4.88E-15	2.13E-14	2.26E-14
8/1/2022	2.15E-15	6.86E-15	5.05E-14	2.89E-14
8/5/2022	1.63E-15	5.18E-15	3.81E-14	2.19E-14
8/8/2022	1.47E-15	6.76E-15	5.25E-14	2.85E-14
8/12/2022	3.93E-15	5.23E-15	5.45E-14	2.21E-14
8/15/2022	5.29E-16	7.37E-15	6.83E-14	3.11E-14
8/19/2022	4.17E-15	5.22E-15	7.68E-14	2.20E-14
8/22/2022	1.63E-16	7.02E-15	2.62E-14	2.96E-14
8/26/2022	8.69E-16	5.15E-15	3.12E-14	2.17E-14
8/29/2022	1.61E-16	6.90E-15	3.32E-14	2.91E-14
9/2/2022	1.01E-15	4.82E-15	4.19E-14	2.18E-14
9/6/2022	5.49E-15	4.81E-15	7.47E-14	2.18E-14
9/9/2022	3.40E-15	6.54E-15	8.62E-14	2.96E-14
9/12/2022	2.38E-15	6.51E-15	6.53E-14	2.95E-14
9/16/2022	1.76E-15	4.82E-15	4.57E-14	2.18E-14
9/19/2022	6.78E-16	6.31E-15	7.27E-14	2.86E-14
9/23/2022	-2.18E-16	4.60E-15	7.39E-15	2.08E-14
9/26/2022	4.70E-15	6.97E-15	5.44E-14	3.16E-14
9/30/2022	-1.74E-15	4.89E-15	4.79E-14	2.21E-14

Sample Collection Date	Result Alpha (mCi/mL)	MDC – Beta (mCi/mL)		
	Sam	ple location DO	E-3	
7/1/2022	4.53E-15	4.61E-15	4.30E-14	2.13E-14
7/5/2022	6.45E-16	4.83E-15	2.63E-14	2.23E-14
7/8/2022	-1.61E-16	6.32E-15	4.17E-15	2.92E-14
7/11/2022	5.23E-16	6.48E-15	1.56E-14	3.00E-14
7/15/2022	-1.64E-15	4.76E-15	1.52E-14	2.20E-14
7/18/2022	-1.60E-16	6.28E-15	2.43E-14	2.91E-14
7/22/2022	8.93E-16	4.78E-15	1.90E-14	2.21E-14
7/25/2022	-1.60E-16	6.28E-15	4.34E-14	2.91E-14
7/29/2022	-1.16E-15	4.88E-15	3.86E-14	2.26E-14
8/1/2022	2.82E-15	6.86E-15	2.81E-14	2.89E-14
8/5/2022	3.39E-15	5.19E-15	4.51E-14	2.19E-14
8/8/2022	1.14E-15	6.76E-15	6.37E-14	2.85E-14
8/12/2022	2.15E-15	5.23E-15	2.79E-14	2.21E-14
8/15/2022	-1.97E-15	7.37E-15	3.97E-14	3.11E-14
8/19/2022	3.66E-15	5.22E-15	6.89E-14	2.20E-14
8/22/2022	2.89E-15	7.03E-15	2.91E-14	2.96E-14
8/26/2022	1.62E-15	5.15E-15	5.10E-14	2.17E-14
8/29/2022	-1.85E-15	6.90E-15	2.46E-14	2.91E-14
9/2/2022	2.75E-15	4.82E-15	4.80E-14	2.18E-14
9/6/2022	4.99E-15	4.81E-15	9.54E-14	2.18E-14
9/9/2022	5.09E-15	6.54E-15	8.66E-14	2.96E-14
9/12/2022	1.71E-15	6.51E-15	1.73E-14	2.95E-14
9/16/2022	-4.78E-16	4.82E-15	1.68E-14	2.18E-14
9/19/2022	-2.96E-16	6.24E-15	1.80E-14	2.83E-14
9/23/2022	-1.18E-15	4.64E-15	1.75E-14	2.10E-14
9/26/2022	1.83E-15	6.96E-15	5.48E-14	3.16E-14
9/30/2022	1.28E-15	4.89E-15	6.42E-14	2.21E-14

Sample Collection Date	Result Alpha (mCi/mL)	Result Beta (mCi/mL)	MDC – Beta (mCi/mL)	
	Sam	ple location DO	E-4	
7/1/2022	3.80E-15	4.61E-15	4.07E-14	2.13E-14
7/5/2022	3.89E-16	4.83E-15	1.21E-14	2.23E-14
7/8/2022	1.18E-15	6.31E-15	-4.36E-15	2.92E-14
7/11/2022	3.28E-15	6.49E-15	2.36E-14	3.00E-14
7/15/2022	1.39E-15	4.75E-15	5.37E-14	2.20E-14
7/18/2022	3.18E-15	6.29E-15	1.65E-14	2.91E-14
7/22/2022	2.16E-15	4.78E-15	5.27E-14	2.21E-14
7/25/2022	-3.16E-15	6.28E-15	1.65E-14	2.91E-14
7/29/2022	3.50E-15	4.87E-15	2.13E-14	2.25E-14
8/1/2022	4.15E-15	6.87E-15	2.17E-14	2.90E-14
8/5/2022	3.14E-15	5.19E-15	1.64E-14	2.19E-14
8/8/2022	1.80E-15	6.76E-15	3.15E-14	2.85E-14
8/12/2022	2.66E-15	5.23E-15	5.28E-14	2.21E-14
8/15/2022	8.86E-16	7.37E-15	7.18E-14	3.11E-14
8/19/2022	2.40E-15	5.22E-15	6.70E-14	2.20E-14
8/22/2022	1.18E-15	7.03E-15	5.71E-14	2.96E-14
8/26/2022	-6.29E-16	5.15E-15	3.42E-14	2.17E-14
8/29/2022	-2.18E-15	6.90E-15	1.21E-14	2.91E-14
9/2/2022	6.48E-15	4.82E-15	3.95E-14	2.18E-14
9/6/2022	4.99E-15	4.81E-15	7.33E-14	2.18E-14
9/6/2022	6.44E-15	6.54E-15	7.13E-14	2.96E-14
9/12/2022	1.71E-15	6.52E-15	1.37E-14	2.95E-14
9/16/2022	1.02E-15	4.82E-15	4.70E-14	2.18E-14
9/19/2022	2.92E-15	6.24E-15	3.94E-14	2.83E-14
9/23/2022	4.98E-16	4.64E-15	2.39E-14	2.10E-14
9/26/2022	3.62E-15	6.96E-15	2.28E-14	3.16E-14
9/30/2022	2.02E-17	4.89E-15	5.14E-14	2.21E-14

Note: Some values are negative after background subtraction.

Table C-2. Individual radionuclide analysis for the composite filter samples.

Radionuclide	Result	MDC	Data	Airborne Concentration					
Radiolidelide	(pCi/sample)	(pCi/sample)	Qualifier	(μCi/mL)					
Location DOE-1 - Air volume/sample = 1.03E+09									
Cesium-137	-0.359	7.6	UU	-3.485E-16					
Strontium-90	0.957	2.89	UU	9.291E-16					
Cobalt-60	-2.8	10	UU	-2.718E-15					
Potassium-40	53	166	UU	5.146E-14					
Beryllium-7	119	74.9		1.155E-13					
Plutonium-238	0.101	0.151	UU	9.806E-17					
Polonium-210	8.85	0.632	J	8.592E-15					
Plutonium-241	7.17	31	UU	6.961E-15					
Thorium-230	0.115	1.02	UU	1.117E-16					
Thorium-228	0.764	1.23	UU	7.417E-16					
Actinium-228	-1.35	33.6	UU	-1.311E-15					
Americium-241	-0.216	0.912	UU	-2.097E-16					
Plutonium-239	0.0262	0.279	UU	2.544E-17					
Ra-228 - total	9.14	6.12	UJ	8.874E-15					
Radium-226, -228 combined	0.536	2.74	UU	5.204E-16					
Thorium-232	0.0277	0.781	UU	2.689E-17					
Uranium-238	0.736	0.374	UJ	7.146E-16					
Uranium-233/234	0.495	0.527	UU	4.806E-16					
Uranium-235/236	0.0343	0.365	UU	3.330E-17					
Loc	cation DOE-2 – Air	volume/sample	= 1.03E+09						
Cesium-137	-1.88	4.65	UU	-1.825E-15					
Strontium-90	-1.01	2.34	UU	-9.806E-16					
Cobalt-60	-2.11	6.5	UU	-2.049E-15					
Potassium-40	103	59.8	UJ	1.000E-13					
Beryllium-7	132	61.3		1.282E-13					
Plutonium-238	0.0432	0.571	UU	4.194E-17					
Polonium-210	9.3	0.428	J	9.029E-15					
Plutonium-241	18	47.1	UU	1.748E-14					
Thorium-230	0.222	1.24	UU	2.155E-16					
Thorium-228	0.202	1.34	UU	1.961E-16					
Actinium-228	18.2	31.9	UU	1.767E-14					
Americium-241	-0.171	0.837	UU	-1.660E-16					
Plutonium-239	-0.0524	0.597	UU	-5.087E-17					
Ra-228 - total	1.69	3.53	UU	1.641E-15					
Radium-226, -228 combined	3.4	2.78	UJ	3.301E-15					
Thorium-232	0.822	0.713	UJ	7.981E-16					
Uranium-238	0.549	0.534	UJ	5.330E-16					

Radionuclide	Result	MDC	Data	Airborne Concentration					
	(pCi/sample)	(pCi/sample)	Qualifier	(μCi/mL)					
Uranium-233/234	0.0781	0.712	UU	7.583E-17					
Uranium-235/236	0.0821	0.518	UU	7.971E-17					
Location DOE-3 – Air volume/sample = 1.03E+09									
Cesium-137	3.72	8.56	UU	3.612E-15					
Strontium-90	-0.464	2.92	UU	-4.505E-16					
Cobalt-60	-0.647	7.68	UU	-6.282E-16					
Potassium-40	38.6	83.3	UU	3.748E-14					
Beryllium-7	115	120	UU	1.117E-13					
Plutonium-238	-0.0492	0.432	UU	-4.777E-17					
Polonium-210	10.4	0.469		1.010E-14					
Plutonium-241	-0.273	33.1	UU	-2.650E-16					
Thorium-230	0.111	1.01	UU	1.078E-16					
Thorium-228	0.31	0.431	UU	3.010E-16					
Actinium-228	15.5	39.8	UU	1.505E-14					
Americium-241	-0.0184	0.647	UU	-1.786E-17					
Plutonium-239	0.0577	0.432	UU	5.602E-17					
Ra-228 - total	9.74	3.16	J	9.456E-15					
Radium-226, -228 combined	2.77	3.48	UU	2.689E-15					
Thorium-232	0.443	0.578	UU	4.301E-16					
Uranium-238	0.686	0.531	UJ	6.660E-16					
Uranium-233/234	0.418	0.743	UU	4.058E-16					
Uranium-235/236	0.00355	0.585	UU	3.447E-18					
Lo	cation DOE-4 – Air	volume/sample	= 1.03E+09						
Cesium-137	0.685	4.83	UU	6.650E-16					
Strontium-90	-0.823	2.94	UU	-7.990E-16					
Cobalt-60	-0.375	6.28	UU	-3.641E-16					
Potassium-40	76	71.6	UI UJ	7.379E-14					
Beryllium-7	186	59.5		1.806E-13					
Plutonium-238	-0.0528	0.448	UU	-5.126E-17					
Polonium-210	9.68	0.434		9.398E-15					
Plutonium-241	17.7	50.3	UU	1.718E-14					
Thorium-230	0.343	1.08	UU	3.330E-16					
Thorium-228	0.605	0.984	UU	5.874E-16					
Actinium-228	-14	26.2	UU	-1.359E-14					
Americium-241	0.0106	0.818	UU	1.029E-17					
Plutonium-239	0.0615	0.614	UU	5.971E-17					
Ra-228 - total	0.842	3.94	UU	8.175E-16					
Radium-226, -228 combined	2.68	2.47	UJ	2.602E-15					
Thorium-232	0.798	0.797	UJ	7.748E-16					

Radionuclide	Result (pCi/sample)	MDC (pCi/sample)	Data Qualifier	Airborne Concentration (μCi/mL)
Uranium-238	0.888	0.393	UJ	8.621E-16
Uranium-233/234	0.423	0.568	υU	4.107E-16
Uranium-235/236	-0.021	0.42	UU	-2.039E-17

Note - Data Qualifier meanings:

UU – Analyte was analyzed for but not detected and is qualified as a non-detect.

U – The analyte was analyzed for, but not detected or is qualified as non-detect because of blank contamination.

J – The analyte was positively identified; the quantitation is estimated because of discrepancies in meeting certain analyte-specific QC criteria.

UJ – The analyte was not detected; however, the result is estimated because of discrepancies in meeting certain analyte-specific QC criteria.

APPENDIX D

PM₁₀ Monthly Audit Reports and Flow Verification Results

		d (Eqn. 1)	Percentile	d^2	d	d ²			
		-1.060		1.124	1.060	1.124	n	$\Sigma \mathbf{d} $	
		-1.008	<u>25th</u>	1.015	1.008	1.015	9	6.661	
		-1.018	-1.008	1.037	1.018	1.037	n-1	$\sum \mathbf{d} ^2$	
		-0.780		0.608	0.780	0.608	8	5.456	
		-0.595	<u>75th</u>	0.354	0.595	0.354			-
		-0.794	-0.595	0.630	0.794	0.630		Bias (%) (Eqn 3)	Both Signs Positive
		-0.356		0.127	0.356	0.127		0.90	FALSE
		-0.595		0.354	0.595	0.354		Signed Bias (%)	Both Signs Negative
		-0.455		0.207	0.455	0.207		-0.90	TRUE

Note: No quality issues reported this quarter.

Reference: U.S. EPA, Ambient Monitoring Technology Information Center (AMTIC) Quality Indicator Assessment Reports

Data Assessment Statistical Calculator - Software to calculate precision and bias statistics

MS EXCEL filename - "11/3/2017 (dasc)11_3_17.xls)" https://www3.epa.gov/tnn/amtic/qareport.html

		d (Eqn. 1)	Percentile	d ²	d	$ \mathbf{d} ^2$
		-0.214		0.046	0.214	0.046
		0.180	<u>25th</u>	0.032	0.180	0.032
		0.114	-0.188	0.013	0.114	0.013
		-0.214		0.046	0.214	0.046
		0.120	<u>75th</u>	0.014	0.120	0.014
		-0.171	0.082	0.029	0.171	0.029
		0.071		0.005	0.071	0.005
		-0.060		0.004	0.060	0.004
		0.000		0.000	0.000	0.000
		-0.427		0.182	0.427	0.182
		-0.179		0.032	0.179	0.032
		-0.057		0.003	0.057	0.003

n	$\sum \mathbf{d} $	
12	1.808	
n-1	$\sum \mathbf{d} ^2$	
11	0.407	

Bias (%) (Eqn 3)	Both Signs Positive
0.21	FALSE
Signed Bias (%)	Both Signs Negative
+/-0.21	FALSE

Note: E-BAM unit Y12096 replaced with unit W23313. Initial audit for unit W23313 on 8/11/2022.

Reference: U.S. EPA, Ambient Monitoring Technology Information Center (AMTIC)

Quality Indicator Assessment Reports

Data Assessment Statistical Calculator - Software to calculate precision and bias statistics MS EXCEL filename - "11/3/2017 (dasc)11_3_17.xls)"

https://www3.epa.gov/tnn/amtic/qareport.html

		d (Eqn. 1)	Percentile	d ²	d	d ²			
		-0.850		0.722	0.850	0.722	n	$\Sigma \mathbf{d} $	
		-1.359	25th	1.846	1.359	1.846	9	7.592	
		-1.519	-0.906	2.309	1.519	2.309	n-1	$\sum \mathbf{d} ^2$	
		-0.356		0.127	0.356	0.127	8	7.552	
		-0.654	<u>75th</u>	0.428	0.654	0.428			_
		-0.737	-0.654	0.544	0.737	0.544		Bias (%) (Eqn 3)	Both Signs Positive
		-0.498		0.248	0.498	0.248		1.08	FALSE
		-0.713		0.509	0.713	0.509		Signed Bias (%)	Both Signs Negative
		-0.906		0.821	0.906	0.821		-1.08	TRUE

Note: No quality issues reported this quarter.

Reference: U.S. EPA, Ambient Monitoring Technology Information Center (AMTIC)

Quality Indicator Assessment Reports

Data Assessment Statistical Calculator - Software to calculate precision and bias statistics

MS EXCEL filename - "11/3/2017 (dasc)11_3_17.xls)" https://www3.epa.gov/tnn/amtic/qareport.html

		•					_	
		d (Eqn. 1)	Percentile	d²	d	d ²		
		-1.200		1.439	1.200	1.439	n	$\Sigma \mathbf{d} $
		-0.831	<u>25th</u>	0.691	0.831	0.691	9	6.235
		-0.906	-0.831	0.821	0.906	0.821	n-	$\sum \mathbf{d} ^2$
		-0.639		0.408	0.639	0.408	8	4.932
		-0.654	<u>75th</u>	0.428	0.654	0.428		
		-0.681	-0.639	0.464	0.681	0.464		Bias (%) (Eqn
		-0.214		0.046	0.214	0.046		0.86
		-0.654		0.428	0.654	0.428		Signed Bias (9
		-0.455		0.207	0.455	0.207		-0.86

n	$\Sigma \mathbf{d} $	
9	6.235	
n-1	$\sum \mathbf{d} ^2$	
8	4.932	

Bias (%) (Eqn 3)	Both Signs Positive
0.86	FALSE
Signed Bias (%)	Both Signs Negative

Note: No quality issues reported this quarter.

<u>Reference</u>: U.S. EPA, Ambient Monitoring Technology Information Center (AMTIC)

Quality Indicator Assessment Reports

Data Assessment Statistical Calculator - Software to calculate precision and bias statistics MS EXCEL filename - "11/3/2017 (dasc)11_3_17.xls)"

https://www3.epa.gov/tnn/amtic/qareport.html

Station # DE	=-1				Serial #	XIV	061			
Audit Date: 7	121/20	22			Audited By	TOU	0/11:	ford		
				Flov	v Audit		Later 1			
Flow Audit Device	Model:	BGI Del	ta Cal DC	C-1A Se	rial No: 1	58047	Calibrat	ion Date:	3/23/2	.022
Leak Check Value:		as f	ound: _	0.4		a	s left: <u>[</u>	7.4		
				E-BAM	Ref. S	td.		E-BAM	Ref	f. Std.
Ambient Tempera	ture:	as fou	und: 2	2.5	°c 21.8	The second second	eft: 22	.5	°c 21.	
Barometric Pressu		as fou		5.1 mm	Hg 715.1	OmmHg as		5,1 mm		O mmH
16.7 lpm Flow I	Rate	as fou	und: 16	.7 IF	m 16.87	Ipm as		,7 1	pm 16.	
14.0 lpm Flow F	Rate	as fou		2	om 14.15	lpm as	eft: (4	1.0		. 15 lpr
17.5 lpm Flow F	Rate	as fou		-	m 17.68	Ipm as	eft: i 7	1,5 1	pm 17.6	8 lpr
			Mecha	nical Audi	ts (Y = Yes	N = No)				
		Sam	ple nozzl		as found	Section of the last of the las	s left	Y		
	Т	1.5	port van		as found	Ya	s left	Y		
		Tape sp	ool cove	rs tight:	as found	Y a	s left	Y		
	Р	M10 pa	rticle tra	p clean:	as found	Y a	s left	Ý		
		PM10	0 drip jar	empty:	as found	Y a	s left	Y		
		PM10 b	oug scree	n clear:	as found	Y a	s left	Y		
Man	ual Span N	Membra	ne Test				Pumr	Test		
Expected Span		ACCUPATION SANDON SANDON		ີ ຄ	Flow Rate	e Vac	uum		ality Categ	orv
Measured Span					14.0 - 15.		lue		Marginal	
	rence (mg			7		(lpm) (Hg)			Ŭ	
% Differer			1.81	%	14.3	415		Mas	picual	
					alibration Va				Jvac	
Parameter	Expected	Found		rameter	Expected		Para	meter	Expected	Found
Clock	0627	0627	A	nalog Mod		Hourly	Flow	v Туре	Actual	ALL
Location	1	1		Baud Ra		9600	-	t Voltage	12.5 v	12,5
Tape Advance	24 hrs	24hr	5	RH Setpoi	nt 45%	45%		nd Temp		258
Realtime Avg	60 mins	60 m		a T Setpoi	nt 15 C	152	D	AC	8.0 v	8.0 J
Machine Type	PM-10	PM-1		RH Contr	ol On	on	RH C	onnect	No	No
Analog FS	1.0 v	1.00	FI	ow Setpoi	nt 16.7	16.7	Pump	Protect	Off	off
			Last	6 Errors in	n E-BAM Erro	or Log				
Err	or		Date	Time		Error			Date	Time
1 No new mess	ages		7/21/22	0633	4					
2	0		7 .		5					
3					6					
Audit Notes:										

Station # DO	E-Z			Se	erial #	Y120°	96			
Audit Date:	121/2	2022	_	Α	udited By :	TS.	Wi	110 for	d	
				Flow	Audit					
Flow Audit Device	Model:	BGI Delt	ta Cal DC-	1A Seri	al No:15	58047	Calibrati	on Date: _	3/23/20	022
Leak Check Value:		as fo	ound:	7-4	<u>.</u>	as	left: _C	7.4	_	
				E-BAM	Ref. St	td.		E-BAM	Ref.	Std.
Ambient Temperat	ture:	as fou	nd: 24	1.5 °c	23.8	°c as le	eft: Z4	.5	c 23,8	°C
Barometric Pressu	re:	as fou	nd: 70°	1.8 mmHg		mmHg as le	eft: 700	1.8 mm	lg 7/2,0	mmHg
16.7 lpm Flow R	late	as fou	nd: 16	7 lpm	16.67	Ipm as le	eft: 16	,7 lp	m 16.6	7 Ipm
14.0 lpm Flow R	ate	as fou	nd: 14.	<i>O</i> Ipm	14.03	Ipm as le	eft: 14	. <i>O</i> Ip	m 14.0	3 lpm
17.5 lpm Flow R	ate	as fou	nd: 17	5 lpm	17.48	Ipm as le	eft:	7.5 lp	m 17.4	18 lpm
			Mechai	nical Audits	(Y = Yes	N = No)				
		Samp	ole nozzle	clean: as	s found	Y as	s left 📄	<u> </u>		
	Ta	ape sup	port vane	clean: a	s found	Y as	s left	Y		
	8	Tape sp	ool cover	s tight: a	s found	Y as	s left 🕒	_		
	PI	M10 par	rticle trap	clean: a	s found	as	s left 🔃	1		
		PM10	drip jar	empty: a	s found	a:	s left 🔛	<u> </u>		
		PM10 b	ug screer	n clear: a	s found	<u> </u>	s left _	<u>r_</u>		
Man	ual Span N	/lembra	ne Test				Pump	Test		
Expected Span	Mass (mg/	/cm2):	0.891		Flow Rate	e Vacu	ıum	Qua	lity Categ	ory
Measured Span	Mass (mg/	/cm2):	0.907)	14.0 - 15.	0 Val	ue	Good /	Marginal	/ Poor
Differ	ence (mg/	/cm2) :	0.01	1	(lpm)	(H	g)			
% Differer	nce / Pass	or Fail:	1.23	%	14,3	412	,3	Ma	rgina	-1
			Set	up and Cali		lues			0	
Parameter	Expected	Found	Par	ameter	Expected	Found	Para	meter	Expected	Found
Clock	0711	0711	Ar	nalog Mode	Hourly	Hourly	Flov	v Туре	Actual	Act
Location	2	2		Baud Rate	9600	9600	Restar	t Voltage	12.5 v	12.5V
Tape Advance	24 hrs	24 hrs		RH Setpoint	45%	45%	Std Co	nd Temp	25 C	25 C
Realtime Avg	60 mins	40 mix	Delta	a T Setpoin	15 C	15°C		AC	8.0 v	8.0 V
Machine Type	PM-10	PM-10		RH Contro	l On	on		onnect	No	No
Analog FS	1.0 v	1.01	Flo	ow Setpoin	t 16.7	16.7	Pump	Protect	Off	off
			Last	6 Errors in	E-BAM Err	or Log				
Err	or		Date	Time		Error			Date	Time
1 No new mes	sages		7/21/22	0719			١			
2	0				5					
3				(5					
Audit Notes:										

Station #	E-3			S	erial#		314			
Audit Date: 7/	21/20	220			Audited By:		3 W	illatord	<u> </u>	
				Flow	Audit					()
Flow Audit Device	Model:	BGI Delt	ta Cal DC-	-1A Ser	ial No: 15	58047	Calib	ration Date:	: 3/23/2	022
Leak Check Value:	-	as fo	ound:(2,3	_		as left	: 0,3		
				E-BAM	Ref. St	td.		E-BAM	Ref	. Std.
Ambient Temperat	ture:	as fou	nd: 24	1.5 %	25,4	°C	as left:	24,5	°c 25.4	4 °c
Barometric Pressu	re:	as fou	nd: 7/	1.8 mmH	g 714.5	mmHg	as left:	711.8 mr	mHg 7/4.	5 mmHg
16.7 lpm Flow R	Rate	as fou	nd: 16	,7 lpn	16.93	lpm	as left:	16.7	lpm 16.	93 lpm
14.0 lpm Flow R	ate	as fou	nd: 14	, D Ipr	14,12	lpm	as left:	14.0	lpm 14.1	/Z Ipm
17.5 lpm Flow R	ate	as fou	nd: 17	,5 lpr	17.77	lpm	as left:	17.5	lpm 17.	77 lpm
			Mecha	nical Audit	s (Y = Yes I	N = No)			
		Samp	ole nozzle		s found	Y	as left	Y		
	T		port vane		s found	Y	as left	Y		
	y: -	Tape sp	ool cover	s tight: a	as found	Y	as left	t <u>Y</u>		
		550	rticle trap	100	as found	Y	as left	t Y		
		70	drip jar		as found	Y	as left	t Y		
		PM10 b	ug scree	n clear: a	as found	Y	as lef	t <u>Y</u>		
Man	ual Span N	/Jembra	ne Test				Р	ump Test		J. C. T.
Expected Span					Flow Rate	1	Vacuum		iality Categ	ory
Measured Span					14.0 - 15.		Value		/ Marginal	
	ence (mg				(lpm)		(Hg)			
% Differer					14.3 419.8 Marginal				fonal	
			Set	tup and Ca	libration Va	lues				
Parameter	Expected	Found	Par	rameter	Expected	Four	nd I	Parameter	Expected	Found
Clock	0904	0904	A	nalog Mod	e Hourly	Hou	rly	Flow Type	Actual	Act
Location	3	3		Baud Rat	e 9600	960	O Re	start Voltage	e 12.5 v	12.5
Tape Advance	24 hrs	24hrs	9	RH Setpoir	t 45%	459		d Cond Tem	p 25 C	25C
Realtime Avg	60 mins	Lomi	Delt	a T Setpoir	nt 15 C	150		DAC	8.0 v	8.00
Machine Type	PM-10	PM-11	ט	RH Contro	ol On	On		RH Connect	No	No
Analog FS	1.0 v	1.00	Flo	ow Setpoir	it 16.7	16.	1 Pu	ump Protect	Off	off
			Last	6 Errors in	E-BAM Err	or Log				
Err	or		Date	Time		Er	rror		Date	Time
1 No new mes	sages		7/21/22	0110	4					
2	0				5					
3					6				<u> </u>	
Audit Notes:										

Station # DOE	-4				erial # 🖖					
Audit Date:	, , ,	200	~	A	udited By:	TS 1	المازور	i tora	1	
				Flow	Audit					
Flow Audit Device	Model:	BGI Delt	ta Cal DC-	1A Seri	ial No:15			on Date:	3/23/20	022
Leak Check Value:		as fo	ound:	0.4	_	as	s left: 🟒	2.4		
				E-BAM	Ref. St	d.		E-BAM	Ref	. Std.
Ambient Temperat	ure:	as fou		8 °0		°c as I	eft: 32	8	°c 31,3	3 %
Barometric Pressui		as fou				mmHg as I	eft: 70	5.1 mm	lg 707.	0 mmH
16.7 lpm Flow R		as fou		,7 lpm		Ipm as I		, 7 lp	m 16.8	-
14.0 lpm Flow R		as fou	nd: 14	. D Ipm		Ipm as I	eft: /4	f, 0 lp	m 14.1	7 lpr
17.5 lpm Flow R	ate	as fou	ind:	7.5 lpm	17,66	Ipm as I	eft: [17	.5 lp	m 17,6	6 lpr
			Mechai	nical Audits	s (Y = Yes I	N = No)				
		Samp	ole nozzle		s found	5.	s left	Y		
	Ta		port vane		s found	Y a	s left	Y		
	7	Tape sp	ool cover	s tight: a	s found	Y a	s left	Y		
	P	M10 pai	rticle trap	clean: a	s found	Ý a	s left	Ý		
		PM10	drip jar	empty: a	s found	Ϋ́a	s left	Y		
		PM10 b	ug screer	n clear: a	s found	ý a	s left	Y		
Man	ual Span N	Летbrа	ne Test				Pump	Test	MEGN -	711
Expected Span			0.915		Flow Rate	Vac	uum	Qua	lity Categ	ory
Measured Span			0.917	_	14.0 - 15.	0 Va	lue	Good /	Marginal	/ Poor
	ence (mg/		0.00	3	(lpm)	(H	lg)			
% Differer				0.33%	15,0	40	3.7	600	d	
			The second second		ibration Va					
Parameter	Expected	Found	Par	ameter	Expected	Found	Para	meter	Expected	Found
Clock	1042	1042	Ar	nalog Mode	e Hourly	Hourly	Flov	v Туре	Actual	Act
Location	4	4		Baud Rate	e 9600	9600	Resta	t Voltage	12.5 v	12.5
Tape Advance	24 hrs	24 hr	'S	RH Setpoin	t 45%	45%	Std Co	ond Temp	25 C	250
Realtime Avg	60 mins	60 m.		a T Setpoin	t 15 C	15%		DAC	8.0 v	8.01
Machine Type	PM-10	PM-16		RH Contro	ol On	On	RH C	onnect	No	No
Analog FS		1.0v		ow Setpoin	t 16.7	16.7	Pump	Protect	Off	0.66
			Last	6 Errors in	E-BAM Erro	or Log				
Err	or		Date	Time		Error			Date	Time
1 No new mes	sages		7/21/22	1051	4					
2	of contract of				5					
3					6					
Audit Notes:										

Audit Date: 8/11/20	22		Audited By:	T.S. U	Dilliford		
		Flo	w Audit				
Flow Audit Device Model:	BGI Delta	Cal DC-1A	Serial No: 158	-	libration Date:	3/23/20	22
Leak Check Value:	as fou	ind: 0.5		as le	eft: 0,5		
		E-BAM	Ref. Std		E-BAM	Ref.	Std.
Ambient Temperature:	as foun	d: 33,8	°c 37.9	°c as left	: 33.8	°c 32.9	
Barometric Pressure:	as foun		mHg 714,0	mmHg as left	: 7/3.8 mm	Hg 714.0	7 mm
16.7 lpm Flow Rate	as foun	-	1pm 16,68	ipm as left	: 16.7	om 16.68	3 1
14.0 lpm Flow Rate	as foun	d: 14.0	lpm 14.03	Ipm as lef	: 14.0 I	om 14.0	
17.5 lpm Flow Rate	as foun		lpm 17,53	Ipm as lef	17.5 IF	om 17.53	2
		Mechanical Au	dits (Y = Yes N	= No)			
	Sampl	e nozzle clean:	as found	Y as l	eft Y		
	Tape supp	ort vane clean:	as found	Y as l			
	Tape spor	ol covers tight:	as found	Y as l	eft Y		
	PM10 part	icle trap clean:	as found	γ as l	eft 📉		
	PM10	drip jar empty:	as found	Y as l			
	PM10 bu	ig screen clear:	as found	Y as l	eft <u>Y</u>		
Manual Span	Membran	e Test			Pump Test		
Expected Span Mass (m			Flow Rate	Vacuu	m Qua	ality Catego	ory
Measured Span Mass (m			14.0 - 15.0	Valu	e Good /	Marginal,	/ Poo
Difference (m	g/cm2) : c	0.023	(lpm)	(Hg)		·	
% Difference (Pas			14.8	421.2	Good	/ May An	al
			Calibration Val				
Parameter Expecte	d Found	Parameter		Found	Parameter	Expected	Fou
Clock 1116	1116	Analog M	ode Hourly	Hourly	Flow Type	Actual	Act
Location 2	12	Baud I	Rate 9600	9600	Restart Voltage	12.5 v	12.
Tape Advance 24 hrs	24hr	RH Setp	oint 45%	45%	Std Cond Temp	25 C	25
Realtime Avg 60 mir		Delta T Setp	oint 15 C	15%	DAC	8.0 v	8.0
Machine Type PM-10		RH Cor	ntrol On	On	RH Connect	No	N
Analog FS 1.0 v		Flow Setp	oint 16.7	16.7	Pump Protect	Off	101
		Last 6 Error	s in E-BAM Erro	r Log			
Error		Date Time		Error		Date	Tim
1 No New Messag	es is	3/11/22 1126		9			
2			5				
3			6				
3							
Audit Notes:							

Station #	,- l				erial #	X 1600		,					
Audit Date: 3/3	30/202	2		A	udited By:	TS	will	iford					
				Flow	Audit								
Flow Audit Device I	Model:	BGI Delt	a Cal DC-	1A Ser	ial No:15			on Date:	3/23/20)22			
Leak Check Value:		as fo	und: 🔼	1.4	as left: 0,4								
				E-BAM	Ref. St	d.		E-BAM	Ref.	Std.			
Ambient Temperat	ure:	as four	nd: 21	00	21.2	°c as le	eft: 21		°c 21,2	°C			
Barometric Pressur	re:	as four	nd: 7/4	/. 7 mmH	8 714.5	mmHg as le	eft: 710	1.7 mml	18 714.S	mmHg			
16.7 lpm Flow R	ate	as fou	nd: 16.	7 lpr	16.80	ipm as le	eft: 16	.7 lp	m 16.8	lpm			
14.0 lpm Flow R	ate	as fou	nd: 14.	O Ipr	14.11	Ipm as le	eft: 14	.0 lp	m 14.11	lpm			
17.5 lpm Flow R	ate	as fou	nd: 17	,5 lpr	17.64	Ipm as le	eft: 17	.5 lp	m 17.6	4 lpm			
	A.W. A.A. (1)		Mechar	nical Audit	s (Y = Yes 1	V = No)							
		Samp	le nozzle		s found	1	s left	Y					
	Ta		ort vane		s found	Y as	s left						
			ool covers		s found	Y as	s left	<u> </u>					
	PI	VI10 par	ticle trap	clean: a	as found	Y as	s left	Y					
		PM10	drip jar	empty: a	as found	Y as	s left	Ϋ́					
		PM10 b	ug screer	clear: a	as found	Y as	s left	<u></u>					
Mani	Manual Span Membrane Test						Pump Test						
Expected Span)	Flow Rate	Vacu	um	Qua	lity Categ	ory			
Measured Span			_		14.0 - 15.	0 Val	lue	Good /	Marginal	/ Poor			
	ence (mg/				(lpm)	(H	g)						
% Differer			1.60%		14.0	416	.3	Marg	mal				
			Set	up and Ca	libration Va			0					
Parameter	Expected	Found	Par	ameter	Expected	Found	Para	meter	Expected	Found			
Clock	0548	0548	Ar	nalog Mod	e Hourly	Howly	Flov	v Туре	Actual	Act			
Location	DOE-1	DOE-1		Baud Rat	e 9600	9600	Resta	t Voltage	12.5 v	125 V			
Tape Advance	24 hrs	24 hr		RH Setpoir	nt 45%	45%	Std Co	ond Temp	25 C	25%			
Realtime Avg		(00min	Delta	T Setpoir	nt 15 C	15°	1	DAC	8.0 v	8.0V			
Machine Type	PM-10			RH Contr		on		Connect	No	NO			
Analog FS		10 V	Flo	ow Setpoir	nt 16.7	16,7	Pump	Protect	Off	off			
			Last	6 Errors ir	E-BAM Err	or Log							
Err	Error Date Time					Error			Date	Time			
Tho new Mes	sages		8/30koz	20556									
2	0.				5								
3					6								
Audit Notes:													
But with the same of the same													

Baseline Air Monitoring Program - DOE

E-BAM Monthly Audit and Maintenance Station # Serial # 1123313 Audited By: Audit Date: Flow Audit Flow Audit Device Model: 158047 Calibration Date: 3/23/2022 BGI Delta Cal DC-1A Serial No: as found: 0,5 as left: 0.5 Leak Check Value: Ref. Std. Ref. Std. E-BAM E-BAM 210 °c as left: as found: Ambient Temperature: 21.0 mmHg 712.0 mmHg as left: 7 TmmHg 717 OmmHg Barometric Pressure: as found: ipm as left: 16.7 lpm Flow Rate as found: lpm Ipm as left: 140 13,99 lpm 14.0 lpm Flow Rate as found: lpm 7.50 17,50 Ipm as left: 17.5 lpm Flow Rate as found: lpm lpm lpm Mechanical Audits (Y = Yes N = No) as found as left Sample nozzle clean: as left Tape support vane clean: as found Tape spool covers tight: as found as left as found as left PM10 particle trap clean: as left PM10 drip jar empty: as found as found as left PM10 bug screen clear: **Pump Test** Manual Span Membrane Test Quality Category Flow Rate Vacuum Expected Span Mass (mg/cm2): 0.885 Good / Marginal / Poor Value Measured Span Mass (mg/cm2): 0.88 14.0 - 15.0 Difference (mg/cm2): 0.004 (lpm) (Hg) % Difference / Fass or Fail: 0, 45% Margina 406.7 14.0 Setup and Calibration Values Expected Found Expected Found Parameter Parameter Expected Found Parameter Flow Type Actual Analog Mode Hourly Clock 0638 6638 9600 Restart Voltage 12.5 v **Baud Rate** Location 2 2 9600 25C Std Cond Temp 25 C 24 hrs **RH Setpoint** 45% Tape Advance 24 hrs DAC 8.0 v 8.0 V Delta T Setpoint 15 C 15C Realtime Avg 60 mins 60 mm No Machine Type PM-10 **RH Control** On On **RH Connect** NO PM-10 Off 0CE **Pump Protect** Flow Setpoint 16.7 Analog FS 1.0 v 1.0 V Last 6 Errors in E-BAM Error Log Time Date Error Error Date Time 8 30/22 0648 Messages 5 6 Audit Notes:

Baseline Air Monitoring Program - DOE

E-BAM Monthly Audit and Maintenance W23314 Station # DOE-3 Serial # Audit Date: Audited By: Flow Audit Flow Audit Device Model: 158047 Calibration Date: 3/23/2022 Serial No: BGI Delta Cal DC-1A as left: 0.4 Leak Check Value: as found: 0.4 E-BAM Ref. Std. Ref. Std. E-BAM 24.8 °c as left: 24.8 75 Ambient Temperature: as found: 25.7 714.0 mmHg as left: Barometric Pressure: as found: mmHg 211.7 ipm as left: 16.81 16.7 lpm Flow Rate as found: lpm 14.05 14.05 Ipm as left: 4.0 14.0 lpm Flow Rate as found: 4.0 lpm Ipm as left: lpm as found: 17.5 17,63 17.5 lpm Flow Rate lpm Mechanical Audits (Y = Yes N = No) Sample nozzle clean: as found as left as left Tape support vane clean: as found as left as found Tape spool covers tight: as found as left PM10 particle trap clean: as found as left PM10 drip jar empty: as left as found PM10 bug screen clear: **Pump Test** Manual Span Membrane Test **Quality Category** Vacuum Expected Span Mass (mg/cm2): 0,919 Flow Rate Good / Marginal / Poor Value 14.0 - 15.0 Measured Span Mass (mg/cm2): 0,922 (Hg) Difference (mg/cm2): 0, 003 (lpm) 0,33% 421.3 15.0 % Difference / Rass or Fail: Setup and Calibration Values Expected Found Parameter Expected Found Parameter Expected Found Parameter Actual Flow Type 0741 Hourly Analog Mode Hourly Clock 0741 12.5 v 9600 Restart Voltage **Baud Rate** 9600 Location 45% Std Cond Temp 25 C 45% RH Setpoint Tape Advance 24 hrs 24hr 8.0 v DAC & Du 15 C Realtime Avg 60 mins Delta T Setpoint 15C Comm No NO **RH Connect RH Control** On Machine Type PM-10 PM-10 ON OFF **Pump Protect** Off Flow Setpoint 16.7 1.0 v Analog FS L.DV Last 6 Errors in E-BAM Error Log Time Date Error Date Time Error Message 8/30/22 0750 5 6 **Audit Notes:**

Baseline Air Monitoring Program - DOE E-BAM Monthly Audit and Maintenance

W23310 Station # DOE - -Serial # Audited By: T.S. Will offere Audit Date: Flow Audit Calibration Date: 3/23/2022 Serial No: 158047 Flow Audit Device Model: BGI Delta Cal DC-1A as left: D. J as found: 775W Leak Check Value: Ref. Std. E-BAM Ref. Std. E-BAM °c as left: 28.8 27,9 28.8 as found: Ambient Temperature: 706 D mmHg as left: 704, 8 mmHg as found: Barometric Pressure: ipm as left: ,81 16.7 lpm Flow Rate as found: 16.7 lpm 14.09 Ipm as left: 14.0 4.09 lpm as found: 14.0 lpm Flow Rate 14.0 17.62 Ipm as left: as found: 17,5 17.5 lpm Flow Rate lpm Mechanical Audits (Y = Yes N = No) as left as found Sample nozzle clean: as left Tape support vane clean: as found as left Tape spool covers tight: as found as found as left PM10 particle trap clean: as left PM10 drip jar empty: as found as left as found PM10 bug screen clear: Pump Test Manual Span Membrane Test **Quality Category** Flow Rate Vacuum Expected Span Mass (mg/cm2): 0 915 Good / Marginal / Poor Value 14.0 - 15.0 Measured Span Mass (mg/cm2): 0, 90((lpm) (Hg) Difference (mg/cm2): 411,3 14.8 % Difference Pass or Fail: Setup and Calibration Values Expected Found Found Parameter Expected Parameter Parameter Expected Found Actual Flow Type Analog Mode Hourly 0924 Clockog 24 Honry 12.5 v 9600 9600 Restart Voltage **Baud Rate** Location 25 C Std Cond Temp 45% 45% **RH Setpoint** 24 hvs Tape Advance 24 hrs 8.0 v DAC Delta T Setpoint 15 C 15% Realtime Avg 60 mins 60 min No **RH Connect RH Control** On On Machine Type PM-10 PM-10 Off **Pump Protect** 16.7 Analog FS 1.0 v Flow Setpoint 1.01 Last 6 Errors in E-BAM Error Log Time Date Time Error Error Date 5 6 Audit Notes:

Baseline Air Monitoring Program - DOE

Station# Doe	the state of the s				***************************************		UE		0		
Audit Date: 9/2	2/20	22			dited By:	I	5.4	villitor	d		
				Flow A							
Flow Audit Device M	odel: [3GI Delta	Cal DC-	1A Seria	l No: 15	8047	-	oration Date	:3/:	23/202	22
Leak Check Value:		as for	und:(0.4			as left	: 0.4			
				E-BAM	Ref. Sto	d.		E-BAM		Ref. S	Std.
Ambient Temperatur	re:	as foun	d: 25	O °C	23.9	°C a	as left:	25.0	°c 2	3.9	°C
Barometric Pressure		as foun	id: 713	5.4 mmHg	715.5	mmHg 2	as left:	715.4 m	mHg 7	15,5	mmHg
16.7 lpm Flow Rat	te	as foun	id: 16.	7 lpm	16.80	lpm a	as left:	16.7	lpm / (0.80	
14.0 lpm Flow Rat	te	as four	nd: 14.	O Ipm	14.05	lpm 8	as left:	14.0	Ipm /	4,05	> lpm
17.5 lpm Flow Rat	te	as four	nd: 17.	5 lpm	17.58	lpm a	as left:	17.5	lpm /	7.58	3 Ipm
			Mechar	nical Audits	(Y = Yes N	I = No)				
		Sampl	le nozzle	clean: as	found	Y_	as lef	t <u>Y</u>			
	Ta	ape supp	ort vane	clean: as	found	Y	as lef	t <u>Y</u>			
		Гаре spo			found	Y	as lef	-			
	PI	VI10 part	ticle trap	clean: as	found	Y	as lef	t <u>Y</u> _			
		PM10	drip jar	empty: as	found	Y	as lef	t <u>Y</u>			
		PM10 bu	ug screer	n clear: as	found	Υ	as lef	t <u>Y</u>			
Manua	al Span N	/lembran	e Test				P	ump Test			
Expected Span M)	Flow Rate	V	/acuum	Q	uality (Catego	ry
Measured Span M					14.0 - 15.0	0	Value	Good	/ Mar	ginal /	Poor
	nce (mg/				(lpm)		(Hg)				
% Differenc	1		2.13	2	14.0	4	12.3	Mar	gina	1	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			-	up and Cali				17.66	7		
Parameter E	xpected	Found	_	ameter	Expected		nd	Parameter	Ехр	ected	Found
Clock		0919	-	nalog Mode		Hour	,	Flow Type	-	tual	Act
Location	1	1	 	Baud Rate	-	960		estart Voltag	ge 12	2.5 v	12.5V
Tape Advance	24 hrs	24hr	 	RH Setpoint		45%		td Cond Ten	np 2	5 C	258
	60 mins			a T Setpoint	-	15C		DAC	8	.0 v	8.00
		PM-10	1	RH Control		on		RH Connect		No	No
Analog FS	1.0 v	1.0 V	FI	ow Setpoint		16.	7 P	ump Protec	t	Off	off
			Last	6 Errors in	E-BAM Erro	or Log					
Erro	r		Date	Time	Error					te	Time
Lensor failure of	Filter Pr	essure	9/17/22	0644 4					-		
2				5							
3				1	5						
Audit Notes:											
On 9/17/2022 0	+ 030	0 the	L unit	LX160	67) 51	nut	down	1 due to	3 115	LNSON	- Failure
filter press	ure - 2	231.8	" Th	Sample	10221	ean	d va	ne were	Clea	ned	and
the unit wa	is res	tarted	on 9	150/202	2908	300,					

Station # DOE	NAME AND ADDRESS OF TAXABLE PARTY.					N233						
Audit Date: 9/23	2/202	2		A	udited By:	TSI	Mill	i ford				
				Flow	Audit							
Flow Audit Device I	Model:	BGI Delt	a Cal DC-	1A Seri	rial No: 158047 Calibration Date: 3/23/2022							
Leak Check Value:	· ·	as fo	und: 🤇),5	_	as	left: _ <	0.5				
				E-BAM	Ref. St	d.		E-BAM	Ref.	Std.		
Ambient Temperat	ure.	as four				°c as le	-	6.7 °				
Barometric Pressur		as four	14	2.8 mmHg		mmHg as le	-	17 8mmH		5mmHg		
16.7 lpm Flow R		as four		7 Ipm	-	ipm as le	_	(7 lpr				
14.0 lpm Flow R		as four	-	, O lpm		Ipm as le	-	4.0 lpr	m 14,0	6 lpm		
17.5 lpm Flow R		as fou		5 lpm	1	Ipm as le	eft: /	7.5 lpr				
			Mechai	nical Audit	s (Y = Yes 1	V = No)						
		Samn	le nozzle		s found	4	left	Y				
	T:		ort vane		s found		left	Y				
			ool cover		s found		left \	7				
			ticle trap	O	s found		left	7				
			drip jar		s found		left	Y				
			ug screer		s found	Y as	left	Y				
							Pump	Tost				
	ual Span N	***************************************		_	Flow Rate	Vacu			lity Categ	orv		
Expected Span					14.0 - 15.				Marginal			
Measured Span	(lpm)	(H		00007	Marginar	,						
	Difference (mg/cm2): 0,002									(
% Differer	nce Pass	or Fail:			114.5	420	12	Ma	rgina	<u>\(\)</u>		
					libration Va				V	1 - 1		
Parameter	Expected			rameter	Expected				Expected	-		
Clock		1014	Aı	nalog Mod		Hourly		v Туре	Actual	Act		
Location		2		Baud Rat		9686		t Voltage	12.5 v	12.50		
Tape Advance		24hr		RH Setpoin		45%		ond Temp	25 C	25C3		
Realtime Avg	60 mins	Comi	1	a T Setpoin		150		DAC	8.0 v	8.00		
Machine Type		PM-1		RH Contro		on		Connect Protect	No Off	No		
Analog FS	1.0 v	1.00		ow Setpoir		16.7	Pump	Protect	Oil	OFF		
			Last		E-BAM Err							
Err	or		Date	Time		Error			Date	Time		
1 No new messages 9/21/2				1020	4							
2					5							
3					6							
Audit Notes:												
1												

Station # DOE	,-3				NAME OF TAXABLE PARTY.	NZ 33	_			
Audit Date: 9/2	2/20	22		Αι	idited By:	TSU	illi-	rord		
				Flow A	Audit					
Flow Audit Device N	Model: I	BGI Delta	Cal DC-	IA Seria	al No: 15	8047 (Calibrati	on Date: _	3/23/20)22
Leak Check Value:	_	as fo	und: 🙆	4		as	left:	2.4		
				-BAM	Ref. St	d.		E-BAM	Ref.	Std.
Ambient Temperat	iire.	as four			28,6	°c as le	-		c 28,	,
Barometric Pressur		as four		5 mmHg	714.0	mmHg as le		1.5 mmH		O mmHg
16.7 lpm Flow R		as four			16,82	ipm as le	-	, 7 lpi	0	
14.0 lpm Flow Ra		as four			14.07	Ipm as le	-	1,0 lps	1	
17.5 lpm Flow Ra		as four	-	5 lpm	1-11	Ipm as le	-	7.5 lp	m 17.6	6 lpm
				ical Audits		V = No)				
		Samn	le nozzle		found		left	Y		
	T:		ort vane		found	The same of the sa	left	7		
			ol covers		found		left	7		
			ticle trap	U	found		left	7		
			drip jar e		s found		left	Y		
			ug screer		s found		left	Y		
					T		Dumr	Test		
	ual Span N				Flow Rate	Vacu			lity Categ	orv
Expected Span I	14.0 - 15.				Marginal Marginal					
Measured Span I				<u> </u>	(lpm)	(H		00007	rvia i Biria i	,
	rence (mg/				1			A A	. 1	
% Differen	ice / Pass	or Fail:			14.0	407.	5	Mare	inal	
		-		up and Cali	-					
Parameter	Expected	-		ameter	Expected			meter	Expected	_
Clock	1103	1103	Ar	alog Mode		Hourly		v Type	Actual	Act
Location	3	3		Baud Rate		9600		t Voltage	12.5 v	1251
Tape Advance		24hr		RH Setpoin		45%		ond Temp	25 C	250
Realtime Avg		Comir	-	T Setpoin		15°C		DAC	8.0 v	8.0 V
Machine Type	-	_		RH Contro		04	-	Connect	No Off	No
Analog FS	1.0 v	1.0 V		ow Setpoin		16,7	Pump	Protect	UII	104
				6 Errors in	E-BAM Err	or Log Error				
Err	Error Date Time								Date	Time
1 No rew M	4									
2	U				5					
3					6					
Audit Notes:										

Station # DOE-	-4			Se	erial#	N233	10			
Audit Date: 9/	22/20	722		Α	udited By :	TSW	illi-	ford		
				Flow	Audit					
Flow Audit Device N	Model: E	3GI Delta	Cal DC-	1A Seri	al No: 15	8047 C	alibrati	on Date:	3/23/20	22
Leak Check Value:	_	as fo	und: _ C	7,4		as	left:	2.4	_	
				E-BAM	Ref. St	d.		E-BAM	Ref.	Std.
Ambient Temperat	ure:	as four		5 °C		⁰c as le	ft: 3	1.5 °	c 29,1	3 °c
Barometric Pressur		as four		4,2 mmHg		mmHg as le		4,2 mmH		
16.7 lpm Flow R		as four		7 lpm	1	ipm as le	-	7 lpi	110	lpm
14.0 lpm Flow Ra										3 lpm
17.5 lpm Flow Ra									58 lpm	
				ical Audits	(Y = Yes 1					
		Samn	le nozzle		s found		left)			
	Ta		ort vane		s found		left \			
			ol cover		s found		left	<u> </u>		
			ticle trap		s found		left \	1		
	• • •		drip jar		s found		left	Y		
			ug screer	, ,	s found		left \	-		
								Took		
	ual Span N				F1 5 1	1 1/2-21		Test	lity Catego	OU.
Expected Span I)	Flow Rate				Marginal			
Measured Span			0,911	7	14.0 - 15.			Good	Marginar	7 1001
Differ	ence (mg/	/cm2):	0.00		(lpm)	(H)			0	
% Differer	nce / Pass	or Fail:	0.4	4%	14.1	388	3,8	600	d	
			Set	up and Cal	ibration Va	lues				
Parameter	Expected	Found	Par	ameter	Expected	Found		meter	Expected	Found
Clock	1159	1159	Aı	nalog Mod	e Hourly	Hourly	Flow Type		Actual	Act
Location	4	4	1	Baud Rat	e 9600	9600		rt Voltage	12.5 v	1251
Tape Advance	24 hrs	24 hrs		RH Setpoin		45%		ond Temp	25 C	25 Z
Realtime Avg	60 mins	60 min	Delt	T Setpoin		15%		DAC	8.0 v	8.00
Machine Type	PM-10			RH Contro		on		Connect	No	NO
Analog FS	1.0 v	1.01	Flo	ow Setpoir	t 16.7	16.7	Pump	Protect	Off	1017
			Last	6 Errors in	E-BAM Err	or Log				
Err	or		Date	Time		Error			Date	Time
1 No new Me	ssages		9/22/2	21206	4					
2					5					
3					6					
Audit Notes:										